Advertisement

Image Indexing Techniques

  • Rafał SchererEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 821)

Abstract

Images are described by various forms of feature descriptors. Especially local invariant features have gained a wide popularity Lowe (Int J Comput Vis 60:91–110, 2004 [17]), Matas et al. (Image Vis Comput 22:761–767, 2004 [18]), Mikolajczyk et al. (Int J Comput Vis 60:63–86, 2004 [20]), Nister Stewenius (Scalable recognition with a vocabulary tree, pp. 2161–2168, 2006 [25]) and Sivic and Zisserman (Video google: a text retrieval approach to object matching in videos, pp. 1470–1477, 2003 [35]).

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indexes. Acta Informatica 1(3), 173–189 (1972).  https://doi.org/10.1007/BF00288683CrossRefGoogle Scholar
  3. 3.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)Google Scholar
  4. 4.
    Bradski, G.: The opencv library. Dr. Dobbs J. 25(11), 120–126 (2000)Google Scholar
  5. 5.
    Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12 (1994)CrossRefGoogle Scholar
  6. 6.
    Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG 2004, pp. 253–262. ACM, New York, NY, USA (2004)Google Scholar
  7. 7.
    Edelkamp, S., Schroedl, S.: Heuristic Search: Theory and Applications. Elsevier (2011)Google Scholar
  8. 8.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  9. 9.
    Grauman, K., Darrell, T.: Efficient image matching with distributions of local invariant features. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 627–634 vol. 2 (2005).  https://doi.org/10.1109/CVPR.2005.138
  10. 10.
    Grycuk, R., Gabryel, M., Scherer, M., Voloshynovskiy, S.: Image descriptor based on edge detection and crawler algorithm. In: International Conference on Artificial Intelligence and Soft Computing, pp. 647–659. Springer International Publishing (2016)Google Scholar
  11. 11.
    Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and microsoft sql server database. In: Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, vol. 9119, pp. 715–726. Springer International Publishing (2015)Google Scholar
  12. 12.
    Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and microsoft sql server database. In: International Conference on Artificial Intelligence and Soft Computing, pp. 715–726. Springer International Publishing (2015)Google Scholar
  13. 13.
    Hamzah, R.A., Rahim, R.A., Noh, Z.M.: Sum of absolute differences algorithm in stereo correspondence problem for stereo matching in computer vision application. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 1, pp. 652–657 (2010).  https://doi.org/10.1109/ICCSIT.2010.5565062
  14. 14.
    Korytkowski, M.: Novel visual information indexing in relational databases. Integr. Comput. Aided Eng. 24(2), 119–128 (2017)CrossRefGoogle Scholar
  15. 15.
    Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Information Sciences 327, 175–182 (2016).  https://doi.org/10.1016/j.ins.2015.08.030. URL http://www.sciencedirect.com/science/article/pii/S0020025515006180MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  17. 17.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004). British Machine Vision Computing 2002CrossRefGoogle Scholar
  19. 19.
    Meskaldji, K., Boucherkha, S., Chikhi, S.: Color quantization and its impact on color histogram based image retrieval accuracy. In: Networked Digital Technologies, 2009. NDT 2009. First International Conference on, pp. 515–517 (2009).  https://doi.org/10.1109/NDT.2009.5272135
  20. 20.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  21. 21.
    Najgebauer, P., Grycuk, R., Scherer, R.: Fast two-level image indexing based on local interest points. In: 2018 23rd International Conference on Methods Models in Automation Robotics (MMAR), pp. 613–617 (2018).  https://doi.org/10.1109/MMAR.2018.8485831
  22. 22.
    Najgebauer, P., Korytkowski, M., Barranco, C.D., Scherer, R.: Artificial Intelligence and Soft Computing: 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12–16, 2016, Proceedings, Part II, chap. Novel Image Descriptor Based on Color Spatial Distribution, pp. 712–722. Springer International Publishing, Cham (2016)Google Scholar
  23. 23.
    Najgebauer, P., Nowak, T., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image retrieval by dictionary of local feature descriptors. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6–11, 2014, pp. 512–517 (2014)Google Scholar
  24. 24.
    Najgebauer, P., Rygal, J., Nowak, T., Romanowski, J., Rutkowski, L., Voloshynovskiy, S., Scherer, R.: Fast dictionary matching for content-based image retrieval. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, vol. 9119, pp. 747–756. Springer International Publishing (2015)Google Scholar
  25. 25.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR 2006, pp. 2161–2168. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  26. 26.
    Nowak, T., Najgebauer, P., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R., Kostadinov, D.: Spatial keypoint representation for visual object retrieval. In: Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, vol. 8468, pp. 639–650. Springer International Publishing (2014)Google Scholar
  27. 27.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Computer Vision and Pattern Recognition, 2007. CVPR 2007. IEEE Conference on, pp. 1–8 (2007)Google Scholar
  28. 28.
    Richardson, I.E.: H. 264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Wiley (2004)Google Scholar
  29. 29.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011).  https://doi.org/10.1109/ICCV.2011.6126544
  30. 30.
    Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers (2004)Google Scholar
  31. 31.
    Rutkowski, L.: Computational Intelligence Methods and Techniques. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Schapire, R.E.: A brief introduction to boosting. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI 1999, pp. 1401–1406. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)Google Scholar
  33. 33.
    Scherer, R.: Designing boosting ensemble of relational fuzzy systems. Int. J. Neural Syst. 20(5), 381388 (2010). http://www.worldscinet.com/ijns/20/2005/S0129065710002528.htmlCrossRefGoogle Scholar
  34. 34.
    Scherer, R.: Multiple Fuzzy Classification Systems. Springer Publishing Company, Incorporated (2014)zbMATHGoogle Scholar
  35. 35.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003. vol. 2, pp. 1470–1477 (2003)Google Scholar
  36. 36.
    Sopyla, K., Drozda, P., Górecki, P.: Svm with cuda accelerated kernels for big sparse problems. In: ICAISC (1), Lecture Notes in Computer Science, vol. 7267, pp. 439–447. Springer (2012)Google Scholar
  37. 37.
    Tao, D.: The corel database for content based image retrieval (2009)Google Scholar
  38. 38.
    Tao, D., Li, X., Maybank, S.J.: Negative samples analysis in relevance feedback. IEEE Trans. Knowl. Data Eng. 19(4), 568–580 (2007)CrossRefGoogle Scholar
  39. 39.
    Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)CrossRefGoogle Scholar
  40. 40.
    Tieu, K., Viola, P.: Boosting image retrieval. Int. J. Comput. Vis. 56(1–2), 17–36 (2004)CrossRefGoogle Scholar
  41. 41.
    Ting, K.M.: Precision and recall. In: Encyclopedia of Machine Learning, pp. 781–781. Springer (2011)Google Scholar
  42. 42.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I–511–I–518 (2001)Google Scholar
  43. 43.
    Voloshynovskiy, S., Diephuis, M., Kostadinov, D., Farhadzadeh, F., Holotyak, T.: On accuracy, robustness, and security of bag-of-word search systems. In: IS&T/SPIE Electronic Imaging, pp. 902, 807–902,807. International Society for Optics and Photonics (2014)Google Scholar
  44. 44.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1794–1801. IEEE (2009)Google Scholar
  45. 45.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW 2006, pp. 13–13 (2006).  https://doi.org/10.1109/CVPRW.2006.121
  46. 46.
    Zhang, W., Yu, B., Zelinsky, G., Samaras, D.: Object class recognition using multiple layer boosting with heterogeneous features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 323–330 vol. 2 (2005).  https://doi.org/10.1109/CVPR.2005.251

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland

Personalised recommendations