Advertisement

Introduction

  • Rafał SchererEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 821)

Abstract

In recent times, one can observe the increasing development of multimedia technologies and their rising dominance in life and business. Society is becoming more eager to use new solutions as they facilitate life, primarily by simplifying contact and accelerating the exchange of experience with others, what was not encountered on such a large scale many years ago.

References

  1. 1.
    Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)CrossRefGoogle Scholar
  2. 2.
    Akusok, A., Miche, Y., Karhunen, J., Bjork, K.M., Nian, R., Lendasse, A.: Arbitrary category classification of websites based on image content. Comput. Intell. Mag. IEEE 10(2), 30–41 (2015).  https://doi.org/10.1109/MCI.2015.2405317CrossRefGoogle Scholar
  3. 3.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)Google Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Computer vision–ECCV 2006, pp. 404–417. Springer (2006)Google Scholar
  6. 6.
    Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers. J. Artif. Intell. Soft Comput. Res. 1(2), 147–153 (2011)Google Scholar
  7. 7.
    Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: European Conference on Computer Vision, pp. 58–71. Springer (2008)Google Scholar
  8. 8.
    Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)CrossRefGoogle Scholar
  9. 9.
    Chang, T., Kuo, C.C.: Texture analysis and classification with tree-structured wavelet transform. Image Process. IEEE Trans. 2(4), 429–441 (1993).  https://doi.org/10.1109/83.242353CrossRefGoogle Scholar
  10. 10.
    Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic gender classification by feature selection. J. Artif. Intell. Soft Comput. Res. 1(3), 241–253 (2011)Google Scholar
  11. 11.
    Daniel Carlos Guimaraes Pedronette, J.A., da S. Torres, R.: A scalable re-ranking method for content-based image retrieval. Inf. Sci. 265(0), 91–104 (2014).  https://doi.org/10.1016/j.ins.2013.12.030MathSciNetCrossRefGoogle Scholar
  12. 12.
    Francos, J., Meiri, A., Porat, B.: A unified texture model based on a 2-d wold-like decomposition. Signal Process. IEEE Trans. 41(8), 2665–2678 (1993).  https://doi.org/10.1109/78.229897CrossRefzbMATHGoogle Scholar
  13. 13.
    Grabner, M., Grabner, H., Bischof, H.: Learning features for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  14. 14.
    Hare, S., Saffari, A., Torr, P.H.: Efficient online structured output learning for keypoint-based object tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1894–1901. IEEE (2012)Google Scholar
  15. 15.
    Huang, J., Kumar, S., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 762–768 (1997).  https://doi.org/10.1109/CVPR.1997.609412
  16. 16.
    Jagadish, H.V.: A retrieval technique for similar shapes. SIGMOD Rec. 20(2), 208–217 (1991)CrossRefGoogle Scholar
  17. 17.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  18. 18.
    Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)Google Scholar
  19. 19.
    Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. Pattern Anal. Mach. Intell. IEEE Trans. 34(9), 1704–1716 (2012)CrossRefGoogle Scholar
  20. 20.
    Kanimozhi, T., Latha, K.: An integrated approach to region based image retrieval using firefly algorithm and support vector machine. Neurocomputing 151, Part 3(0), 1099–1111 (2015)CrossRefGoogle Scholar
  21. 21.
    Karakasis, E., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recogn. Lett. 55, 22–27 (2015)CrossRefGoogle Scholar
  22. 22.
    Karimi, B., Krzyzak, A.: A novel approach for automatic detection and classification of suspicious lesions in breast ultrasound images. J. Artif. Intell. Soft Comput. Res. 3(4), 265–276 (2013)CrossRefGoogle Scholar
  23. 23.
    Kauppinen, H., Seppanen, T., Pietikainen, M.: An experimental comparison of autoregressive and fourier-based descriptors in 2d shape classification. Pattern Anal. Mach. Intell. IEEE Trans. 17(2), 201–207 (1995).  https://doi.org/10.1109/34.368168CrossRefGoogle Scholar
  24. 24.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. , vol. 2, pp. II–II. IEEE (2004)Google Scholar
  25. 25.
    Kiranyaz, S., Birinci, M., Gabbouj, M.: Perceptual color descriptor based on spatial distribution: a top-down approach. Image Vision Comput. 28(8), 1309–1326 (2010)CrossRefGoogle Scholar
  26. 26.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 1097–1105 (2012)Google Scholar
  27. 27.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)Google Scholar
  28. 28.
    Lin, C.H., Chen, H.Y., Wu, Y.S.: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst. Appl. 41(15), 6611–6621 (2014)CrossRefGoogle Scholar
  29. 29.
    Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)CrossRefGoogle Scholar
  30. 30.
    Liu, L., Shao, L., Li, X.: Evolutionary compact embedding for large-scale image classification. Inf. Sci. 316, 567–581 (2015)CrossRefGoogle Scholar
  31. 31.
    Liu, S., Bai, X.: Discriminative features for image classification and retrieval. Pattern Recogn. Lett. 33(6), 744–751 (2012)CrossRefGoogle Scholar
  32. 32.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004). British Machine Vision Computing 2002CrossRefGoogle Scholar
  34. 34.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  35. 35.
    Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)CrossRefGoogle Scholar
  36. 36.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, pp. 2161–2168. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  37. 37.
    Ogiela, M.R., Tadeusiewicz, R.: Syntactic reasoning and pattern recognition for analysis of coronary artery images. Artif. Intell. Med. 26(1), 145–159 (2002)CrossRefGoogle Scholar
  38. 38.
    Ogiela, M.R., Tadeusiewicz, R.: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach. Instrum. Measurement IEEE Trans. 54(6), 2149–2155 (2005)CrossRefGoogle Scholar
  39. 39.
    Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: Proceedings 3rd IEEE Workshop on Applications of Computer Vision, 1996. WACV 1996, pp. 96–102 (1996).  https://doi.org/10.1109/ACV.1996.572008
  40. 40.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the fourth ACM international conference on Multimedia, pp. 65–73. ACM (1997)Google Scholar
  41. 41.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl. Based Syst. 39, 85–94 (2013)CrossRefGoogle Scholar
  42. 42.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011).  https://doi.org/10.1109/ICCV.2011.6126544
  43. 43.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  44. 44.
    Shrivastava, N., Tyagi, V.: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf. Sci. 259, 212–224 (2014).  https://doi.org/10.1016/j.ins.2013.08.043CrossRefGoogle Scholar
  45. 45.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 1470–1477 vol. 2 (2003)Google Scholar
  46. 46.
    Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancera case study. Int. J. Appl. Math. Comput. Sci. 20(1), 149–156 (2010)CrossRefGoogle Scholar
  47. 47.
    Sünderhauf, N., Protzel, P.: Brief-gist-closing the loop by simple means. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1234–1241. IEEE (2011)Google Scholar
  48. 48.
    Tsai, G.: Histogram of oriented gradients. Univ. Mich. 1(1), 1–17 (2010)Google Scholar
  49. 49.
    Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, London, UK, UK (2001)CrossRefGoogle Scholar
  50. 50.
    Wang, X.Y., Yang, H.Y., Li, Y.W., Li, W.Y., Chen, J.W.: A new svm-based active feedback scheme for image retrieval. Eng. Appl. Artif. Intell. 37, 43–53 (2015)CrossRefGoogle Scholar
  51. 51.
    Wu, J., Shen, H., Li, Y.D., Xiao, Z.B., Lu, M.Y., Wang, C.L.: Learning a hybrid similarity measure for image retrieval. Pattern Recogn. 46(11), 2927–2939 (2013)CrossRefGoogle Scholar
  52. 52.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1794–1801 (2009).  https://doi.org/10.1109/CVPR.2009.5206757
  53. 53.
    Yu, J., Qin, Z., Wan, T., Zhang, X.: Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120(0), 355–364 (2013). Image Feature Detection and DescriptionGoogle Scholar
  54. 54.
    Žemgulys, J., Raudonis, V., Maskeliūnas, R., Damaševičius, R.: Recognition of basketball referee signals from videos using histogram of oriented gradients (hog) and support vector machine (svm). Procedi. Comput. Sci. 130, 953–960 (2018)CrossRefGoogle Scholar
  55. 55.
    Zhao, W.L., Ngo, C.W.: Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection. IEEE Trans. Image Process. 18(2), 412–423 (2009)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Zitnick, C., Dollar, P.: Edge boxes: Locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., (eds.) Computer Vision ECCV 2014, Lecture Notes in Computer Science, vol. 8693, pp. 391–405. Springer International Publishing (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland

Personalised recommendations