Advertisement

Overview of Free Interface Substructuring Approaches for Systems with Arbitrary Viscous Damping in Dynamic Substructuring

  • Fabian M. GruberEmail author
  • Dennis Berninger
  • Daniel J. Rixen
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Most classical substructuring methods yield great approximation accuracy if the underlying system is not damped. One approach is a fixed interface method, the Craig-Bampton method. In contrast, many other methods (e.g., MacNeal method, Rubin method, Craig-Chang method) employ free interface modes, (residual) attachment modes, and rigid body modes. None of the aforementioned methods takes any damping effects into account when performing the reduction. If damping significantly influences the dynamic behavior of the system, the approximation accuracy can be very poor. One procedure to handle arbitrarily viscously damped systems and to take damping effects into account is to transform the second-order differential equations into twice the number of first-order differential equations resulting in state-space representation of the system. Solving the corresponding eigenvalue problem allows the damped equations to be decoupled; however, complex eigenmodes and eigenvalues occur. The complex modes are used to build a reduction basis that includes damping properties.

The derivation of different Craig-Bampton substructuring methods (fixed interface) for viscously damped systems was presented in Gruber et al. (Comparison of Craig-Bampton approaches for systems with arbitrary viscous damping in dynamic substructuring). In contrast, we present here the derivation of different free interface substructuring methods for viscously damped systems in a comprehensible consistent manner. Craig and Ni suggested a method that employs complex free interface vibration modes (1989). De Kraker and van Campen give an extension of Rubin’s method for general state-space models (1996). Liu and Zheng proposed an improved component modes synthesis method for nonclassically damped systems (2008), which is an extension of Craig and Ni’s method. A detailed comparison between the different formulations will be given. Liu and Zheng’s method can be considered as a second-order extension of Craig and Ni’s method. We propose a third-order extension and a generalization to any given higher order. Moreover, a new method combining the reduction basis of Liu and Zheng’s approach with the primal assembly procedure applied by de Kraker and van Campen is proposed. The presented theory and the comparison between the methods will be illustrated in different examples.

Keywords

Dynamic substructuring Component mode synthesis Free interface methods Damped systems State-space formulation Complex modes 

References

  1. 1.
    Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741 CrossRefGoogle Scholar
  3. 3.
    MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971). https://doi.org/10.1016/0045-7949(71)90031-9 CrossRefGoogle Scholar
  4. 4.
    Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975). https://doi.org/10.2514/3.60497 CrossRefGoogle Scholar
  5. 5.
    Rixen, D.J.: A dual Craig-Bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004). https://doi.org/10.1016/j.cam.2003.12.014 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Craig, R.R., Chang, C.-J.: On the use of attachment modes in substructure coupling for dynamic analysis. In: 18th Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences, pp. 89–99. American Institute of Aeronautics and Astronautics, San Diego (1977). https://doi.org/10.2514/6.1977-405
  7. 7.
    Herting, D.N.: A general purpose, multi-stage, component modal synthesis method. Finite Elem. Anal. Des. 1(2), 153–164 (1985)CrossRefGoogle Scholar
  8. 8.
    Park, K.C., Park, Y.H.: Partitioned component mode synthesis via a flexibility approach. AIAA J. 42(6), 1236–1245 (2004). https://doi.org/10.2514/1.10423 CrossRefGoogle Scholar
  9. 9.
    Gruber, F.M., Rixen, D.J.: Evaluation of substructure reduction techniques with fixed and free interfaces. Stroj. Vestn.-J. Mech. 62(7–8), 452–462 (2016). https://doi.org/10.5545/sv-jme.2016.3735 CrossRefGoogle Scholar
  10. 10.
    Craig, R.R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, pp. 1573–1584 (2000)Google Scholar
  11. 11.
    Gruber, F.M., Rixen, D.J.: Comparison of Craig-Bampton approaches for systems with arbitrary viscous damping in dynamic substructuring. In: Linderholt, A., Allen, M.S., Mayes, R.L., Rixen, D. (eds.) Dynamics of Coupled Structures, vol. 4, pp. 35–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74654-8_3 CrossRefGoogle Scholar
  12. 12.
    Hasselman, T.K., Kaplan, A.: Dynamic analysis of large systems by complex mode synthesis. J. Dyn. Syst. Meas. Control. 96(3), 327–333 (1974). https://doi.org/10.1115/1.3426810 CrossRefGoogle Scholar
  13. 13.
    Beliveau, J.-G., Soucy, Y.: Damping synthesis using complex substructure modes and a Hermitian system representation. AIAA J. 23(12), 1952–1956 (1985). https://doi.org/10.2514/3.9201 CrossRefGoogle Scholar
  14. 14.
    de Kraker, A.: Generalization of the Craig-Bampton CMS procedure for general damping. Technical Report, Technische Universiteit Eindhoven, Vakgroep Fundamentele Werktuigkunde, Rapportnr. WFW 93.023 (1993)Google Scholar
  15. 15.
    Craig, R.R., Ni, Z.: Component mode synthesis for model order reduction of nonclassically damped systems. J. Guid. Control. Dyn. 12(4), 577–584 (1989). https://doi.org/10.2514/3.20446 MathSciNetCrossRefGoogle Scholar
  16. 16.
    de Kraker, A., van Campen, D.H.: Rubin’s CMS reduction method for general state-space models. Comput. Struct. 58(3), 597–606 (1996). https://doi.org/10.1016/0045-7949(95)00151-6 CrossRefGoogle Scholar
  17. 17.
    Liu, M.H., Zheng, G.T.: Improved component-mode synthesis for nonclassically damped systems. AIAA J. 46(5), 1160–1168 (2008) https://doi.org/10.2514/1.32869 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Caughey, T.K.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27(2), 269–271 (1960). https://doi.org/10.1115/1.3643949 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, F., Imam, A., Morzfeld, M.: The decoupling of damped linear systems in oscillatory free vibration. J. Sound Vib. 324(1), 408–428 (2009). https://doi.org/10.1016/j.jsv.2009.02.005 CrossRefGoogle Scholar
  20. 20.
    Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 32(3), 583–588 (1965). https://doi.org/10.1115/1.3627262 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hasselman, T.K.: Damping synthesis from substructure tests. AIAA J. 14(10), 1409–1418 (1976). https://doi.org/10.2514/3.61481 CrossRefGoogle Scholar
  22. 22.
    Rayleigh, J.W.S.B.: The Theory of Sound, vol. 2. Macmillan, London (1896)zbMATHGoogle Scholar
  23. 23.
    Frazer, R.A., Duncan, W.J., Collar, A.R.: Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge University Press, Cambridge (1938)CrossRefGoogle Scholar
  24. 24.
    Hurty, W.C., Rubinstein, M.F.: Dynamics of Structures. Prentice-Hall, Englewood Cliffs (1964)Google Scholar
  25. 25.
    Lang, G.F.: Understanding modal vectors. In: Mains, M., Blough, J.R. (eds.) Topics in Modal Analysis {&} Testing, Volume 10: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 55–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54810-4_8 CrossRefGoogle Scholar
  26. 26.
    Craig, R.R., Chung, Y.-T.: A generalized substructure coupling procedure for damped systems. In: 22nd Structures, Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences, pp. 254–266. American Institute of Aeronautics and Astronautics, Atlanta (1981). https://doi.org/10.2514/6.1981-560
  27. 27.
    Balmès, E.: New results on the identification of normal modes from experimental complex modes. Mech. Syst. Signal Process. 11(2), 229–243 (1997).  https://doi.org/10.1006/MSSP.1996.0058 CrossRefGoogle Scholar
  28. 28.
    Gruber, F.M., Rixen, D.J.: Dual Craig-Bampton component mode synthesis method for model order reduction of nonclassically damped linear systems. Mech. Syst. Signal Process. 111, 678–698 (2018). https://doi.org/10.1016/J.YMSSP.2018.04.019 CrossRefGoogle Scholar
  29. 29.
    de Kraker, A.: The RUBIN CMS procedure for general state-space models. Technical Report, Technische Universiteit Eindhoven, Vakgroep Fundamentele Werktuigkunde, Rapportnr. Rapportnr. WFW 94.081 (1994)Google Scholar
  30. 30.
    Zhu, D.C., Shi, G.Q.: A theory of structural dynamics with defective phenomena. In: Computational Mechanics ’88, pp. 1146–1147. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-61381-4_305 CrossRefGoogle Scholar
  31. 31.
    Muravyov, A.A., Hutton, S.G.: Component mode synthesis for nonclassically damped systems. AIAA J. 34(8), 1664–1669 (1996). https://doi.org/10.2514/3.13287 CrossRefGoogle Scholar
  32. 32.
    Martinez, D.R., Carrie, T.G., Gregory, D.L., Miller, A.K.: Combined experimental/analytical modelling using component modes synthesis (1984)Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  • Fabian M. Gruber
    • 1
    Email author
  • Dennis Berninger
    • 1
  • Daniel J. Rixen
    • 1
  1. 1.Faculty of Mechanical EngineeringTechnical University of MunichGarchingGermany

Personalised recommendations