Advertisement

Strigolactones and Parasitic Plants

  • Maurizio VurroEmail author
  • Angela Boari
  • Benjamin Thiombiano
  • Harro Bouwmeester
Chapter

Abstract

A parasitic plant is a flowering plant that attaches itself morphologically and physiologically to a host (another plant) by a modified root (the haustorium). Only about 25 out of the 270 genera of parasitic plants have a negative impact in agriculture and forestry and thus can be considered weeds. Among them, the most damaging root parasitic weeds belong to the genera Orobanche and Phelipanche (commonly named broomrapes) and Striga (witchweeds) (all belonging to the Orobanchaceae family). Considering the aims of the book, this chapter will focus only on this group of parasitic weeds, as in these plants strigolactones have a key role both in their life cycle, and in management strategies to control them. Distribution, agricultural importance and life cycle of these parasitic weeds are briefly introduced, after which we focus on the role of strigolactones in seed germination, parasite development, host specificity, plant nutrition and microbiome composition. Furthermore, some weed control approaches involving strigolactones are discussed.

Keywords

Parasitic weeds Orobanche Phelipanche Striga Germination stimulants 

Notes

Glossary

ABC transporter (ATP-binding cassette transporter)

Transport protein, consisting of a transmembrane domain and membrane-associated ATPase, that utilizes the energy of ATP to transport substrates across cellular membranes.

Allelopathy

The phenomenon that plants release molecules (called allelochemicals) that affect seed germination, plant physiology, growth and survival of other plants.

Arbuscular mycorrhizal (AM) fungi

A group of obligate fungal root biotrophs that engage in symbiosis with 80% of all land plants. They penetrate the cortical cells of the roots of a vascular plant, forming unique structures, arbuscules, that help plants to capture nutrients such as phosphorus, sulphur, nitrogen and micronutrients from the soil and get photoassimilates of the plant in return.

Aromatic ring

A cyclic (ring-shaped), planar (flat) molecule with a ring of resonance bonds that confers high stability to the molecule. The simplest aromatic compound is benzene, and the most common aromatic compounds are derived from it.

Bioactiphore

The active part of a molecule responsible for the biological activity of the compound.

Biofuel

Fuel derived directly from plants or indirectly from agricultural, commercial, domestic and/or industrial waste.

Carotenoids

Organic pigments produced by plants and algae, in which they play an important role as accessory pigments in photosynthesis, as well as by several bacteria and fungi. Carotenoids are also precursors for cell signalling molecules, e.g. abscisic acid, which regulates plant growth, seed dormancy, embryo maturation and germination, cell division and elongation, floral growth and stress responses.

Seed dormancy

A process that prevents germination of an intact viable seed in a specified period of time under any combination of normal physical environmental factors that are otherwise favourable for its germination.

Gene silencing

Interruption or suppression of the expression of a gene at the transcriptional or translational level.

Intercrop

A crop grown between the rows of another crop.

Isomer

A molecule with the same molecular formula as another molecule but with a different chemical structure.

Nodulation

The process of forming root nodules containing symbiotic, nitrogen fixing and bacteria.

Noncanonical SLs

SLs lacking the A, B or C ring but still retaining the enol ether-D ring moiety, which is essential for biological activity.

Nucleophilic agent

A reagent that forms a bond to its reaction partner (the electrophile) by donating both bonding electrons.

Phloem

The living tissue that transports the soluble organic compounds made in the leaves during photosynthesis to all other parts of the plant.

Rhizosphere

The zone of soil surrounding a plant root where the biology and chemistry of the soil are directly affected by a plant’s root system, associated root secretions and microorganisms.

Xylem

Plant vascular tissue that conveys water and dissolved minerals from the roots to the rest of the plant and also provides physical support.

References

  1. Abbes Z, Kharrat M, Delavault P et al (2007) Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Prot 26:1777–1784.  https://doi.org/10.1016/j.cropro.2007.03.012 CrossRefGoogle Scholar
  2. Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641.  https://doi.org/10.4161/psb.20039 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abebe G, Sahile G, Abdel-Rahman MA-T (2005) Effect of soil solarization on Orobanche soil seed bank and tomato yield in Central Rift Valley of Ethiopia. World J Agric Sci 1:143–147Google Scholar
  4. Acharya BD (2014) Assessment of different non-host crops as trap crop for reducing Orobanche aegyptiaca Pers. seed bank. Ecoprint An Int J Ecol 19:31–38.  https://doi.org/10.3126/eco.v19i0.9851 CrossRefGoogle Scholar
  5. Acharya BD, Khattri GB, Chettri MK, Srivastava SC (2002) Effect of Brassica campestris var. toria as a catch crop on Orobanche aegyptiaca seed bank. Crop Prot 21:533–537.  https://doi.org/10.1016/S0261-2194(01)00137-5 CrossRefGoogle Scholar
  6. Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.  https://doi.org/10.1038/nature03608 CrossRefPubMedGoogle Scholar
  7. Aksoy E, Arslan ZF, Tetik ES (2015) Using the possibilities of some trap, catch and Brassicaceaen crops for controlling crenate broomrape a problem in lentil fields. Int J Plant Prod 10:53–62Google Scholar
  8. Al-Menoufi OA (1989) Crop rotation as a control measure of Orobanche crenata in Vicia faba fields. In: Wegmann K, Musselman L (eds) Progress in Orobanche research. Eberhard-Karl-Universitat, Tubingen, pp 241–247Google Scholar
  9. Aly R, Dubey NK, Yahyaa M et al (2014) Gene silencing of CCD7 and CCD8 in Phelipanche aegyptiaca by tobacco rattle virus system retarded the parasite development on the host. Plant Signal Behav 9:e29376.  https://doi.org/10.4161/psb.29376 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Auger B, Pouvreau JB, Pouponneau K et al (2012) Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol Plant Microbe Interact 25:993–1004.  https://doi.org/10.1094/MPMI-01-12-0006-R CrossRefPubMedGoogle Scholar
  11. Babiker AG, Hamdoun AM (1982) Factors affecting the activity of GR7 in stimulating germination of Striga hermonthica (Del.) Benth. Weed Res 22:111–115.  https://doi.org/10.1111/j.1365-3180.1982.tb00152.x CrossRefGoogle Scholar
  12. Babiker AG, Ahmed E, Dawoud D, Abdella N (2007) Orobanche species in Sudan: history, distribution and management. Sudan J Agric Res 10:107–114Google Scholar
  13. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  14. Bar-Nun N, Sachs T, Mayer AM (2008) A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann Bot 101:261–265.  https://doi.org/10.1093/aob/mcm032 CrossRefPubMedGoogle Scholar
  15. Bedi JS, Kapur SP, Mohan C (1997) Orobanche – a threat to raya and taramira in Punjab. J Res (Punjab Agric Univ) 34:149–152Google Scholar
  16. Besserer A, Puech-Pagès V, Kiefer P et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226.  https://doi.org/10.1371/journal.pbio.0040226 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boari A, Ciasca B, Pineda-Martos R et al (2016) Parasitic weed management by using strigolactones-degrading fungi. Pest Manag Sci 72:2043–2047.  https://doi.org/10.1002/ps.4226 CrossRefPubMedGoogle Scholar
  18. Borghi L, Kang J, Ko D et al (2015) The role of ABCG-type ABC transporters in phytohormone transport. Biochem Soc Trans 43:924–930.  https://doi.org/10.1042/BST20150106 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364.  https://doi.org/10.1016/S1369-5266(03)00065-7 CrossRefPubMedGoogle Scholar
  20. Bouwmeester HJ, Roux C, López-Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230.  https://doi.org/10.1016/j.tplants.2007.03.009 CrossRefPubMedGoogle Scholar
  21. Bülbül F, Aksoy E, Uygur S, Uygur N (2009) Broomrape (Orobanche spp.) problem in the eastern mediterranean region of Turkey. Helia 32:141–152.  https://doi.org/10.2298/HEL0951141B CrossRefGoogle Scholar
  22. Cagáň L, Tóth P (2003) A decrease in tomato yield caused by branched broomrape (Orobanche ramosa) parasitization. Acta Fytotech Zootech 6:65–68Google Scholar
  23. Cardoso C, Zhang Y, Jamil M et al (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 111:2379–2384.  https://doi.org/10.1073/pnas.1317360111 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carson AG (1989) Effect of intercropping sorghum and groundnuts on density of Striga hermonthica in The Gambia. Trop Pest Manag 35:130–132.  https://doi.org/10.1080/09670878909371340 CrossRefGoogle Scholar
  25. Chang M, Lynr DG, Netzly DH, Butler LG (1986) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 108:7858–7860.  https://doi.org/10.1021/ja00284a074 CrossRefPubMedGoogle Scholar
  26. Charnikhova TV, Gaus K, Lumbroso A et al (2017) Zealactones. Novel natural strigolactones from maize. Phytochemistry 137:123–131.  https://doi.org/10.1016/j.phytochem.2017.02.010 CrossRefPubMedGoogle Scholar
  27. Charnikhova TV, Gaus K, Lumbroso A et al (2018) Zeapyranolactone – a novel strigolactone from maize. Phytochem Lett 24:172–178.  https://doi.org/10.1016/j.phytol.2018.01.003 CrossRefGoogle Scholar
  28. Cheng X, Flokova K, Bouwmeester H, Ruyter-Spira C (2017) The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed Phelipanche ramosa in tomato plants. Front Plant Sci 8:392.  https://doi.org/10.3389/fpls.2017.00392 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206.  https://doi.org/10.1146/annurev-arplant-042110-103849 CrossRefPubMedGoogle Scholar
  30. Cissoko M, Boisnard A, Rodenburg J et al (2011) New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol 192:952–963.  https://doi.org/10.1111/j.1469-8137.2011.03846.x CrossRefPubMedGoogle Scholar
  31. Das M, Fernández-Aparicio M, Yang Z et al (2015) Parasitic plants Striga and Phelipanche dependent upon exogenous strigolactones for germination have retained genes for strigolactone biosynthesis. Am J Plant Sci 6:1151–1166.  https://doi.org/10.4236/ajps.2015.68120 CrossRefGoogle Scholar
  32. De Groote H, Wangare L, Kanampiu F et al (2008) The potential of a herbicide resistant maize technology for Striga control in Africa. Agric Syst 97:83–94.  https://doi.org/10.1016/j.agsy.2007.12.003 CrossRefGoogle Scholar
  33. Dhanapal GN, Struik PC, Udayakumar M, Timmermans PCJM (1996) Management of broomrape (Orobanche spp.) – a review. J Agron Crop Sci 176:335–359.  https://doi.org/10.1111/j.1439-037X.1996.tb00479.x CrossRefGoogle Scholar
  34. Díaz JS, Norambuena H, López-Granados FM (2006) Characterization of the holoparasitism of Orobanche ramosa on tomatoes under field conditions. Agric Téc 66:223–234CrossRefGoogle Scholar
  35. Dita MA, Die JV, Román B et al (2009) Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res 49:66–80.  https://doi.org/10.1111/j.1365-3180.2009.00746.x CrossRefGoogle Scholar
  36. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221.  https://doi.org/10.1038/nrm3088 CrossRefPubMedGoogle Scholar
  37. Dor E, Alperin B, Wininger S et al (2010) Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp. Euphytica 171:371–380.  https://doi.org/10.1007/s10681-009-0041-2 CrossRefGoogle Scholar
  38. Dugje IY, Kamara AY, Omoigui LO (2006) Infestation of crop fields by Striga species in the savanna zones of Northeast Nigeria. Agric Ecosyst Environ 116:251–254.  https://doi.org/10.1016/j.agee.2006.02.013 CrossRefGoogle Scholar
  39. Eizenberg H, Golan S, Joel DM (2002) First report of the parasitic plant Orobanche aegyptiaca infecting olive. Plant Dis 86:814.  https://doi.org/10.1094/PDIS.2002.86.7.814A CrossRefPubMedGoogle Scholar
  40. Ejeta G (2007) The Striga scourge in Africa: a growing pandemic. In: Integrating new technologies for Striga control. World Scientific, Singapore, pp 3–16CrossRefGoogle Scholar
  41. Emechebe AM, Singh BB, Leleji OI, et al (1991) Cowpea-striga problems and research in Nigeria. In: Combating striga in Africa: proceedings of the international workshop held in Ibadan, Nigeria, 22–24 Aug 1988. International Institute of Tropical Agriculture, pp 18–28Google Scholar
  42. Evidente A, Fernández-Aparicio M, Cimmino A et al (2009) Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–6958.  https://doi.org/10.1016/j.tetlet.2009.09.142 CrossRefGoogle Scholar
  43. Evidente A, Cimmino A, Fernández-Aparicio M et al (2011) Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag Sci 67:1015–1022.  https://doi.org/10.1002/ps.2153 CrossRefPubMedGoogle Scholar
  44. Fernández-Aparicio M, Emeran AA, Rubiales D (2008) Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot 27:653–659.  https://doi.org/10.1016/j.cropro.2007.09.009 CrossRefGoogle Scholar
  45. Fernández-Aparicio M, Emeran AA, Rubiales D (2010) Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot 29:867–871.  https://doi.org/10.1016/j.cropro.2010.03.004 CrossRefGoogle Scholar
  46. Fernández-Aparicio M, Kisugi T, Xie X et al (2014) Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J Agric Food Chem 62:7063–7071.  https://doi.org/10.1021/jf5027235 CrossRefPubMedGoogle Scholar
  47. Foo E, Yoneyama K, Hugill CJ et al (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87.  https://doi.org/10.1093/mp/sss115 CrossRefPubMedGoogle Scholar
  48. Gbèhounou G, Adango E (2003) Trap crops of Striga hermonthica: in vitro identification and effectiveness in situ. Crop Prot 22:395–404.  https://doi.org/10.1016/S0261-2194(02)00196-5 CrossRefGoogle Scholar
  49. Gibot-Leclerc S (2003) Rôle potentiel des plantes adventices du colza d’hiver dans l’extension de l’orobanche rameuse en Poitou-Charentes (Potential role of winter rape weeds in the extension of broomrape in Poitou-Charentes). C R Biol 326:645–658.  https://doi.org/10.1016/S1631-0691(03)00169-0 CrossRefPubMedGoogle Scholar
  50. Gibot-Leclerc S, Perronne R, Dessaint F et al (2016) Assessment of phylogenetic signal in the germination ability of Phelipanche ramosa on Brassicaceae hosts. Weed Res 56:452–461.  https://doi.org/10.1111/wre.12222 CrossRefGoogle Scholar
  51. Gobena D, Shimels M, Rich PJ et al (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci U S A 114:4471–4476.  https://doi.org/10.1073/pnas.1618965114 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gressel J, Hanafi A, Head G et al (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689.  https://doi.org/10.1016/j.cropro.2003.11.014 CrossRefGoogle Scholar
  53. Haq BU, Ahmad MZ, Ur Rehman N et al (2017) Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation. BMC Plant Biol 17:259.  https://doi.org/10.1186/s12870-017-1182-4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hooper AM, Tsanuo MK, Chamberlain K et al (2010) Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904–908.  https://doi.org/10.1016/j.phytochem.2010.02.015 CrossRefPubMedGoogle Scholar
  55. Ito S, Ito K, Abeta N et al (2016) Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal Behav 11:e1126031.  https://doi.org/10.1080/15592324.2015.1126031 CrossRefPubMedGoogle Scholar
  56. Jamil M, Charnikhova T, Cardoso C et al (2011a) Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res 51:373–385.  https://doi.org/10.1111/j.1365-3180.2011.00847.x CrossRefGoogle Scholar
  57. Jamil M, Rodenburg J, Charnikhova T, Bouwmeester HJ (2011b) Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol 192:964–975.  https://doi.org/10.1111/j.1469-8137.2011.03850.x CrossRefPubMedGoogle Scholar
  58. Jamil M, Charnikhova T, Houshyani B et al (2012) Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235:473–484.  https://doi.org/10.1007/s00425-011-1520-y CrossRefPubMedGoogle Scholar
  59. Jamil M, Van Mourik TA, Charnikhova T, Bouwmeester HJ (2013) Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Res 53:121–130.  https://doi.org/10.1111/wre.12003 CrossRefGoogle Scholar
  60. Jamil M, Charnikhova T, Jamil T et al (2014a) Influence of fertilizer microdosing on strigolactone production and Striga hermonthica parasitism in pearl millet. Int J Agric Biol 16:935–940Google Scholar
  61. Jamil M, Charnikhova T, Verstappen F et al (2014b) Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals. Weed Res 54:307–313.  https://doi.org/10.1111/wre.12067 CrossRefGoogle Scholar
  62. Joel DM, Hershenhorn J, Eizenberg H et al (2007) Biology and management of weedy root parasites. In: Janick J (ed) Horticultural reviews. Wiley, London, pp 267–350CrossRefGoogle Scholar
  63. Joel DM, Chaudhuri SK, Plakhine D et al (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–634.  https://doi.org/10.1016/j.phytochem.2011.01.037 CrossRefPubMedGoogle Scholar
  64. Johnson DE, Riches CR, Diallo R, Jones MJ (1997) Striga on rice in West Africa; crop host range and the potential of host resistance. Crop Prot 16:153–157.  https://doi.org/10.1016/S0261-2194(96)00079-8 CrossRefGoogle Scholar
  65. Kannan C, Zwanenburg B (2014) A novel concept for the control of parasitic weeds by decomposing germination stimulants prior to action. Crop Prot 61:11–15.  https://doi.org/10.1016/j.cropro.2014.03.008 CrossRefGoogle Scholar
  66. Kgosi RL, Zwanenburg B, Mwakaboko AS, Murdoch AJ (2012) Strigolactone analogues induce suicidal seed germination of Striga spp. in soil. Weed Res 52:197–203.  https://doi.org/10.1111/j.1365-3180.2012.00912.x CrossRefGoogle Scholar
  67. Khan ZR, Midega CAO, Bruce TJA et al (2010) Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196.  https://doi.org/10.1093/jxb/erq229 CrossRefPubMedGoogle Scholar
  68. Kim SK, Akintunde AY, Walker P (1994) Responses of maize, sorghum and millet host plants to infestation by Striga hermonthica. Crop Prot 13:582–590.  https://doi.org/10.1016/0261-2194(94)90003-5 CrossRefGoogle Scholar
  69. Kleifeld Y, Goldwasser Y, Herlzlinger G et al (1994) The effects of flax (Linum usitatissimum L.) and other crops as trap and catch crops for control of Egyptian broomrape (Orobanche aegyptiaca Pers.). Weed Res 34:37–44.  https://doi.org/10.1111/j.1365-3180.1994.tb01971.x CrossRefGoogle Scholar
  70. Kohlen W, Charnikhova T, Lammers M et al (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547.  https://doi.org/10.1111/j.1469-8137.2012.04265.x CrossRefPubMedGoogle Scholar
  71. Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549.  https://doi.org/10.1111/j.1469-8137.2011.03678.x CrossRefPubMedGoogle Scholar
  72. Kumar M, Pandya-Kumar N, Kapulnik Y, Koltai H (2015) Strigolactone signaling in root development and phosphate starvation. Plant Signal Behav 10:e1045174.  https://doi.org/10.1080/15592324.2015.1045174 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Labrada R (2007) Progress on farmers training on parasitic weed management. Food Agriculture Organisation United Nations, p 156Google Scholar
  74. Lei L (2017) Parasitic plants: injecting hormone into host. Nat Plants 3:17084.  https://doi.org/10.1038/nplants.2017.84 CrossRefPubMedGoogle Scholar
  75. Letousey P, De Zélicourt A, Vieira Dos Santos C et al (2007) Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol 56:536–546.  https://doi.org/10.1111/j.1365-3059.2007.01575.x CrossRefGoogle Scholar
  76. Lins RD, Colquhoun JB, Mallory-Smith CA (2006) Investigation of wheat as a trap crop for control of Orobanche minor. Weed Res 46:313–318.  https://doi.org/10.1111/j.1365-3180.2006.00515.x CrossRefGoogle Scholar
  77. Liu CW, Murray JD (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants (Basel) 5:(3)33.  https://doi.org/10.3390/plants5030033 CrossRefGoogle Scholar
  78. Liu Q, Zhang Y, Matusova R et al (2014) Striga hermonthica MAX2 restores branching but not the very low fluence response in the Arabidopsis thaliana max2 mutant. New Phytol 202:531–541.  https://doi.org/10.1111/nph.12692 CrossRefPubMedGoogle Scholar
  79. López-Ráez JA, Matusova R, Cardoso C et al (2008) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 64:471–477.  https://doi.org/10.1002/ps.1692 CrossRefGoogle Scholar
  80. López-Ráez JA, Charnikhova T, Gomez-Roldan V et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874.  https://doi.org/10.1111/j.1469-8137.2008.02406.x CrossRefPubMedGoogle Scholar
  81. Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM (1998) Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot 81:319–326.  https://doi.org/10.1006/anbo.1997.0563 CrossRefGoogle Scholar
  82. Mallory-Smith C, Colquhoun J (2012) Small broomrape (Orobanche minor) in Oregon and the 3 Rs: regulation, research, and reality. Weed Sci 60:277–282.  https://doi.org/10.1614/WS-D-11-00078.1 CrossRefGoogle Scholar
  83. Mangnus EM, Stommen PLA, Zwanenburg B (1992) A standardized bioassay for evaluation of potential germination stimulants for seeds of parasitic weeds. J Plant Growth Regul 11:91–98.  https://doi.org/10.1007/BF00198020 CrossRefGoogle Scholar
  84. Manyong VM, Alene AD, Olanrewaju A et al (2007) Baseline study of Striga control using IR maize in Western Kenya. AATF/IITA Striga Control Project, pp 27–31Google Scholar
  85. Marzec M, Muszynska A, Gruszka D (2013) The role of strigolactones in nutrient-stress responses in plants. Int J Mol Sci 14:9286–9304.  https://doi.org/10.3390/ijms14059286 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Matusova R, van Mourik T, Bouwmeester HJ (2004) Changes in the sensitivity of parasitic weed seeds to germination stimulants. Seed Sci Res 14:335–344.  https://doi.org/10.1079/SSR2004187 CrossRefGoogle Scholar
  87. Matusova R, Rani K, Verstappen FW et al (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934.  https://doi.org/10.1104/pp.105.061382 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mohamed KI, Musselman LJ, Riches CR (2001) The genus Striga (Scrophulariaceae) in Africa. Ann Mo Bot Gard 88:60–103.  https://doi.org/10.2307/2666132 CrossRefGoogle Scholar
  89. Mohemed N, Charnikhova T, Fradin EF et al (2018) Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. J Exp Bot 69:2415–2430.  https://doi.org/10.1093/jxb/ery041 CrossRefPubMedGoogle Scholar
  90. Motazedi S, Jahedi A, Farnia A (2010) Integrated broomrape (Orobanche aegyptiaca) control by sulfosulfuron (WG 75%) herbicide with wheat mulch applied in field potato. In: Proceedings of 3rd Iranian weed science congress, volume 2: key papers, weed management and herbicides, Babolsar, Iran, 17–18 Feb 2010. Iranian Society of Weed Science, Tehran, pp 227–229Google Scholar
  91. Musselman LJ, Parker C (1982) Preliminary host ranges of some strains of economically important broomrapes (Orobanche). Econ Bot 36:270–273.  https://doi.org/10.1007/BF02858547 CrossRefGoogle Scholar
  92. Neondo JO, Alakonya AE, Kasili RW (2017) Screening for potential Striga hermonthica fungal and bacterial biocontrol agents from suppressive soils in Western Kenya. BioControl 62:705–717.  https://doi.org/10.1007/s10526-017-9833-9 CrossRefGoogle Scholar
  93. Oswald A, Ransom JK (2001) Striga control and improved farm productivity using crop rotation. Crop Prot 20:113–120.  https://doi.org/10.1016/S0261-2194(00)00063-6 CrossRefGoogle Scholar
  94. Parker C (1994) The present state of the Orobanche problem. In: Pieterse AH, Verkleij JAC, ter Borg SJ (eds) Biology and management of Orobanche. Proceedings of the third international workshop on Orobanche and related Striga research, Amsterdam, Netherlands, 8–12 Nov 1993. Royal Tropical Institute, Amsterdam, pp 17–26Google Scholar
  95. Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459.  https://doi.org/10.1002/ps.1713 CrossRefPubMedGoogle Scholar
  96. Parker C (2013) The parasitic weeds of the Orobanchaceae. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic Orobanchaceae: parasitic mechanisms and control strategies. Springer, Berlin, pp 313–344CrossRefGoogle Scholar
  97. Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB International, WallingfordGoogle Scholar
  98. Pavan S, Schiavulli A, Marcotrigiano AR et al (2016) Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol Plant Microbe Interact 29:743–749.  https://doi.org/10.1094/MPMI-07-16-0134-R CrossRefPubMedGoogle Scholar
  99. Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450.  https://doi.org/10.1016/j.tplants.2011.05.006 CrossRefPubMedGoogle Scholar
  100. Pérez-de-Luque A, Galindo JC, Macías FA, Jorrin J (2000) Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry 53:45–50.  https://doi.org/10.1016/S0031-9422(99)00485-9 CrossRefPubMedGoogle Scholar
  101. Perronne R, Gibot-Leclerc S, Dessaint F et al (2017) Is induction ability of seed germination of Phelipanche ramosa phylogenetically structured among hosts? A case study on Fabaceae species. Genetica 145:481–489.  https://doi.org/10.1007/s10709-017-9990-x CrossRefPubMedGoogle Scholar
  102. Pickett JA, Hamilton ML, Hooper AM et al (2010) Companion cropping to manage parasitic plants. Annu Rev Phytopathol 48:161–177.  https://doi.org/10.1146/annurev-phyto-073009 CrossRefPubMedGoogle Scholar
  103. Pouvreau JB, Gaudin Z, Auger B et al (2013) A high-throughput seed germination assay for root parasitic plants. Plant Methods 9:32.  https://doi.org/10.1186/1746-4811-9-32 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Press MC, Shah N, Tuohy JM, Stewart GR (1987) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiol 85:1143–1145.  https://doi.org/10.1104/pp.85.4.1143 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Riopel JL, Timko MP (1995) Haustorial initiation and differentiation. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 39–79Google Scholar
  106. Rodenburg J, Bastiaans L, Weltzien E, Hess DE (2005) How can field selection for Striga resistance and tolerance in sorghum be improved? Field Crops Res 93:34–50.  https://doi.org/10.1016/j.fcr.2004.09.004 CrossRefGoogle Scholar
  107. Rodenburg J, Cissoko M, Kayeke J et al (2015) Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions? Field Crops Res 170:83–94.  https://doi.org/10.1016/j.fcr.2014.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Román B, Satovic Z, Alfaro C et al (2007) Host differentiation in Orobanche foetida Poir. Flora Morphol Distrib Funct Ecol Plants 202:201–208.  https://doi.org/10.1016/j.flora.2006.07.003 CrossRefGoogle Scholar
  109. Rubiales D, Fernández-Aparicio M, Wegmann K, Joel DM (2009) Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res 49:23–33.  https://doi.org/10.1111/j.1365-3180.2009.00742.x CrossRefGoogle Scholar
  110. Ruyter-Spira C, Kohlen W, Charnikhova T et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734.  https://doi.org/10.1104/pp.110.166645 CrossRefPubMedGoogle Scholar
  111. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83.  https://doi.org/10.1016/j.tplants.2012.10.003 CrossRefPubMedGoogle Scholar
  112. Samejima H, Babiker AG, Takikawa H et al (2016) Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag Sci 72:2035–2042.  https://doi.org/10.1002/ps.4215 CrossRefPubMedGoogle Scholar
  113. Sauerborn J (1991) The economic importance of the phytoparasites Orobanche and Striga. In: Ransom JK, Musselman LJ, Worsham AD, Parker C (eds) Proceedings of the 5th international symposium of parasitic weeds, Nairobi, Kenya, 24–30 June 1991. CIMMYT (International Maize and Wheat Improvement Center), Nairobi, pp 137–143Google Scholar
  114. Sauerborn J, Saxena MC (1986) A review on agronomy in relation to Orobanche problems in faba bean (Vicia faba L.). In: ter Borg S (ed) Proceedings of a workshop on biology and control of Orobanche, Wageningen, Netherlands, 13–17 Jan 1986. Landbouwuniversiteit, pp 160–165Google Scholar
  115. Saxena MC, Linke KH, Sauerborn J (1994) Integrated control of Orobanche in cool-season food legumes. In: Pieterse A, Verkleij J, Borg S (eds) Biology and management of Orobanche. Royal Tropical Institute, Amsterdam, pp 419–431Google Scholar
  116. Schlemper TR, Leite MFA, Lucheta AR et al (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol Ecol 93.  https://doi.org/10.1093/femsec/fix096
  117. Scholes JD, Press MC (2008) Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 11:180–186.  https://doi.org/10.1016/j.pbi.2008.02.004 CrossRefPubMedGoogle Scholar
  118. Spallek T, Melnyk CW, Wakatake T et al (2017) Interspecies hormonal control of host root morphology by parasitic plants. Proc Natl Acad Sci U S A 114:5283–5288.  https://doi.org/10.1073/pnas.1619078114 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Sun H, Tao J, Liu S et al (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746.  https://doi.org/10.1093/jxb/eru029 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Swanton CJ, Booth BD (2004) Management of weed seedbanks in the context of populations and communities. Weed Technol 18:1496–1502.  https://doi.org/10.1614/0890-037X(2004)018[1496:MOWSIT]2.0.CO;2 CrossRefGoogle Scholar
  121. Tasker AV, Westwood JH (2012) The U.S. witchweed eradication effort turns 50: a retrospective and look-ahead on parasitic weed management. Weed Sci 60:267–268.  https://doi.org/10.1614/WS-D-12-00003.1 CrossRefGoogle Scholar
  122. Těšitel J, Plavcová L, Cameron DD (2010) Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signal Behav 5:1072–1076.  https://doi.org/10.4161/psb.5.9.12563 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Timus A, Croitoru N (2007) The state of tobacco culture in Republic Moldova and phytosanitary problems of tobacco production. Rasteniev’dni Nauk 44:209–212Google Scholar
  124. Torres-Vera R, Garcia JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216.  https://doi.org/10.1111/mpp.12074 CrossRefPubMedGoogle Scholar
  125. Ueno K, Fujiwara M, Nomura S et al (2011a) Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds. J Agric Food Chem 59:9226–9231.  https://doi.org/10.1021/jf202418a CrossRefPubMedGoogle Scholar
  126. Ueno K, Nomura S, Muranaka S et al (2011b) Ent-2′-epi-orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490.  https://doi.org/10.1021/jf2024193 CrossRefPubMedGoogle Scholar
  127. Ueno K, Furumoto T, Umeda S et al (2014) Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108:122–128.  https://doi.org/10.1016/j.phytochem.2014.09.018 CrossRefPubMedGoogle Scholar
  128. Wang Y, Bouwmeester HJ (2018) Structural diversity in the strigolactones. J Exp Bot 69:2219–2230.  https://doi.org/10.1093/jxb/ery091 CrossRefPubMedGoogle Scholar
  129. Warren P (2006) The branched broomrape eradication program in Australia. In: 15th Australian weeds conference, South Australia, managing weeds in a changing climate. Weed Management Society of South Australia, Adelaide, pp 610–613Google Scholar
  130. Westwood JH (2013) The physiology of the established parasite–host association. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic Orobanchaceae. Springer, Berlin, pp 87–114CrossRefGoogle Scholar
  131. Yoneyama K, Awad AA, Xie X et al (2010) Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol 51:1095–1103.  https://doi.org/10.1093/pcp/pcq055 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Yoneyama K, Xie X, Kim HI et al (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207.  https://doi.org/10.1007/s00425-011-1568-8 CrossRefPubMedGoogle Scholar
  133. Yoneyama K, Arakawa R, Ishimoto K et al (2015) Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol 206:983–989.  https://doi.org/10.1111/nph.13375 CrossRefPubMedGoogle Scholar
  134. Zonno MC, Montemurro P, Vurro M (2000) Orobanche ramosa, un’infestante parassita in espansione nell’Italia meridionale. Inf Fitopatol 4:13–21Google Scholar
  135. Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62.  https://doi.org/10.1093/mp/sss141 CrossRefPubMedGoogle Scholar
  136. Zwanenburg B, Mwakaboko AS, Reizelman A et al (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491.  https://doi.org/10.1002/ps.1706 CrossRefPubMedGoogle Scholar
  137. Zwanenburg B, Ćavar Zeljković S, Pospíšil T (2016) Synthesis of strigolactones, a strategic account. Pest Manag Sci 72:15–29.  https://doi.org/10.1002/ps.4105 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maurizio Vurro
    • 1
    Email author
  • Angela Boari
    • 1
  • Benjamin Thiombiano
    • 2
  • Harro Bouwmeester
    • 2
  1. 1.Institute of Sciences of Food Production, National Research CouncilBariItaly
  2. 2.Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations