Advertisement

Unconditionally Secure Distributed Oblivious Polynomial Evaluation

  • Louis CianciulloEmail author
  • Hossein Ghodosi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11396)

Abstract

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas in 1999. An OPE protocol involves a receiver, R who holds a value, \(\alpha \) and a sender, S with a private polynomial, f(x). OPE allows R to compute \(f(\alpha )\) without revealing either \(\alpha \) or f(x). Since its inception, OPE has been established as an important building block in many distributed applications.

In this article we investigate a method of achieving unconditionally secure distributed OPE (DOPE) in which the function of the sender is distributed amongst a set of n servers. Specifically, we introduce a model for DOPE based on the model for distributed oblivious transfer (DOT) described by Blundo et al. in 2002. We then describe a protocol that achieves the security defined by our model.

Our DOPE protocol is efficient and achieves a high level of security. Furthermore, our proposed protocol can also be used as a DOT protocol with little to no modification.

References

  1. 1.
    Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient distributed oblivious transfer. J. Comput. Syst. Sci. 78(4), 1142–1157 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988. ACM, New York (1988)Google Scholar
  3. 3.
    Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_19CrossRefGoogle Scholar
  4. 4.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure distributed oblivious transfer. J. Cryptol. 20(3), 323–373 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on unconditionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36492-7_19CrossRefzbMATHGoogle Scholar
  6. 6.
    Corniaux, C.L.F., Ghodosi, H.: An entropy-based demonstration of the security of Shamir’s secret sharing scheme. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 1, pp. 46–48, April 2014Google Scholar
  7. 7.
    Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_22CrossRefGoogle Scholar
  8. 8.
    Cheong, K.Y., Koshiba, T., Nishiyama, S.: Strengthening the security of distributed oblivious transfer. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 377–388. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02620-1_26CrossRefzbMATHGoogle Scholar
  9. 9.
    Corniaux, C.L.F., Ghodosi, H.: A verifiable distributed oblivious transfer protocol. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 444–450. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22497-3_33CrossRefGoogle Scholar
  10. 10.
    Corniaux, C.L.F., Ghodosi, H.: An information-theoretically secure threshold distributed oblivious transfer protocol. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 184–201. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37682-5_14CrossRefzbMATHGoogle Scholar
  11. 11.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  12. 12.
    Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 2263–2276. ACM, New York (2017)Google Scholar
  13. 13.
    Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_22CrossRefGoogle Scholar
  14. 14.
    Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Winter, A.: Information theoretically secure oblivious polynomial evaluation: model, bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_6CrossRefzbMATHGoogle Scholar
  15. 15.
    Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_4CrossRefGoogle Scholar
  16. 16.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–64 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, H.D., Yang, X., Feng, D.G., Li, B.: Distributed oblivious function evaluation and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_3CrossRefGoogle Scholar
  19. 19.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999, pp. 245–254. ACM, New York (1999)Google Scholar
  21. 21.
    Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_16CrossRefGoogle Scholar
  22. 22.
    Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36231-2_31CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tonicelli, R., et al.: Information-theoretically secure oblivious polynomial evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its applications. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 222–230. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.James Cook UniversityTownsvilleAustralia

Personalised recommendations