Advertisement

A Closer Look at the Guo–Johansson–Stankovski Attack Against QC-MDPC Codes

  • Tung ChouEmail author
  • Yohei Maezawa
  • Atsuko Miyaji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11396)

Abstract

In Asiacrypt 2016, Guo, Johansson, and Stankovski presented a reaction attack against QC-MDPC McEliece. In their attack, by observing the difference in failure rates for various sets \(\varPhi _d\) of error vectors, the attacker obtains the distances between 1’s in the secret key and can thus recover the whole secret key. While the attack appears to be powerful, the paper only shows experiment results against the bit-flipping algorithm that uses precomputed thresholds, and the explanation of why the attack works does not seem to be convincing.

In this paper, we give some empirical evidence to show that the Guo–Johansson–Stankovski attack, to some extent, works independently of the way that the thresholds in the bit-flipping algorithm are chosen. Also, by viewing the bit-flipping algorithm as a variant of “statistical decoding”, we point out why the explanation of the Guo–Johansson–Stankovski paper is not reasonable, identify some factors that can affect the failure rates, and show how the factors change for different \(\varPhi _d\).

References

  1. 1.
    Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10031. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-662-53887-6. ISBN 978-3-662-53886-9CrossRefzbMATHGoogle Scholar
  2. 2.
    Bertoni, G., Coron, J.-S. (eds.): CHES 2013. LNCS, vol. 8086. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-40349-1. ISBN 978-3-642-40348-4CrossRefzbMATHGoogle Scholar
  3. 3.
    Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-662-53140-2. ISBN 978-3-662-53139-6CrossRefzbMATHGoogle Scholar
  4. 4.
    Batten, L.M., Safavi-Naini, R. (eds.): ACISP 2006. LNCS, vol. 4058. Springer, Berlin (2006).  https://doi.org/10.1007/11780656. ISBN 3-540-35458-1CrossRefzbMATHGoogle Scholar
  5. 5.
    Lange, T., Steinwandt, R. (eds.): PQCrypto 2018. LNCS, vol. 10786. Springer, Berlin (2018).  https://doi.org/10.1007/978-3-319-79063-3. ISBN 978-3-319-79062-6CrossRefGoogle Scholar
  6. 6.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory, pp. 114–116. JPL DSN Progress Report (1978). http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
  7. 7.
    Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory, pp. 2069–2073 (2013). http://eprint.iacr.org/2012/409.pdf
  8. 8.
    Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_29CrossRefGoogle Scholar
  9. 9.
    Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40349-1_16. http://eprint.iacr.org/2015/425.pdfCrossRefzbMATHGoogle Scholar
  10. 10.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15, 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 280–300. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_14CrossRefGoogle Scholar
  12. 12.
    Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780656_24CrossRefGoogle Scholar
  13. 13.
    Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: a timing attack and a CCA2 KEM. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 47–76. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-79063-3_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations