Advertisement

Practical Algebraic Side-Channel Attacks Against ACORN

  • Alexandre AdomnicaiEmail author
  • Laurent Masson
  • Jacques J. A. Fournier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11396)

Abstract

The authenticated cipher ACORN is one of the two finalists of the CAESAR competition and is intended for lightweight applications. Because such use cases require protection against physical attacks, several works have been undertaken to achieve secure implementations. Although dedicated threshold and masked schemes have been proposed, no practical side-channel attack against ACORN has been published in the literature yet. It has been theoretically demonstrated that ACORN is vulnerable against differential power analysis but the feasibility of the attack has not been validated in a practical manner. This paper details the results obtained when putting the attack into practice against a software implementation running on a 32-bit micro-controller. Especially, these practical results led us to propose two optimizations of the reference attack: one that requires less knowledge of initial vectors and another one that is less prone to errors and requires fewer acquisitions.

Keywords

ACORN Authenticated encryption Side-channel attacks 

References

  1. 1.
    Adomnicai, A., Fournier, J.J., Masson, L.: Masking the lightweight authenticated ciphers ACORN and Ascon in software. In: Tiplea, F.L., Warinschi, B. (eds.) Cryptography and Information Security in the Balkans. Springer, Cham (2018). https://eprint.iacr.org/2018/708Google Scholar
  2. 2.
    Biryukov, A., Dinu, D., Großschädl, J.: Correlation power analysis of lightweight block ciphers: from theory to practice. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 537–557. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_29CrossRefGoogle Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_2CrossRefGoogle Scholar
  4. 4.
    Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of acorn with a single fault. J. Inf. Secur. Appl. 29(C), 57–64 (2016).  https://doi.org/10.1016/j.jisa.2016.03.003CrossRefGoogle Scholar
  5. 5.
    Diehl, W., Abdulgadir, A., Farahmand, F., Kaps, J.P., Gaj, K.: Comparison of cost of protection against differential power analysis of selected authenticated ciphers. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 147–152, April 2018.  https://doi.org/10.1109/HST.2018.8383904
  6. 6.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44709-1_21CrossRefGoogle Scholar
  7. 7.
    Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability checking. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 553–567. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44957-4_37CrossRefGoogle Scholar
  8. 8.
    Kazmi, A.R., Afzal, M., Amjad, M.F., Abbas, H., Yang, X.: Algebraic side channel attack on trivium and grain ciphers. IEEE Access 5, 23958–23968 (2017).  https://doi.org/10.1109/ACCESS.2017.2766234CrossRefGoogle Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  10. 10.
    McCann, D., Eder, K., Oswald, E.: Characterising and comparing the energy consumption of side channel attack countermeasures and lightweight cryptography on embedded devices. In: 2015 International Workshop on Secure Internet of Things (SIoT), pp. 65–71, September 2015.  https://doi.org/10.1109/SIOT.2015.11
  11. 11.
    Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45418-7_17CrossRefzbMATHGoogle Scholar
  12. 12.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16342-5_29CrossRefGoogle Scholar
  13. 13.
    Schneider, T., Moradi, A.: Leakage assessment methodology. J. Cryptogr. Eng. 6(2), 85–99 (2016).  https://doi.org/10.1007/s13389-016-0120-yCrossRefGoogle Scholar
  14. 14.
    Siddhanti, A., Sarkar, S., Maitra, S., Chattopadhyay, A.: Differential fault attack on grain v1, ACORN v3 and lizard. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.) SPACE 2017. LNCS, vol. 10662, pp. 247–263. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71501-8_14CrossRefGoogle Scholar
  15. 15.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02777-2_24CrossRefGoogle Scholar
  16. 16.
    Standaert, F.X.: How (not) to use welch’s t-test in side-channel security evaluations. Cryptology ePrint Archive, Report 2017/138 (2017). https://eprint.iacr.org/2017/138
  17. 17.
    Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy, C., Marnane, W.: Correlation Power Analysis of Large Word Sizes (2007). http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
  18. 18.
    Wu, H.: ACORN: A Lightweight Authenticated Cipher (v3). Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf
  19. 19.
    Zhang, X., Feng, X., Lin, D.: Fault attack on ACORN v3. Comput. J. (2018).  https://doi.org/10.1093/comjnl/bxy044MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Trusted ObjectsAix-en-ProvenceFrance
  2. 2.Mines Saint-Étienne, CEA-Tech, Centre CMPGardanneFrance
  3. 3.Univ. Grenoble Alpes, CEA-LETI, DSYSGrenobleFrance

Personalised recommendations