Advertisement

A Hierarchical Secret Sharing Scheme Based on Information Dispersal Techniques

  • Koji ShimaEmail author
  • Hiroshi Doi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11396)

Abstract

Hierarchical secret sharing schemes are known for how they share a secret among a group of participants partitioned into levels. In this study, we consider using a systematic information dispersal algorithm (IDA). We then apply the general concept of hierarchy to the generator matrix used in a systematic IDA and propose an ideal hierarchical secret sharing scheme applicable at any level. For perfect privacy, secret sharing schemes depend on the fact that an adversary can only pool at most \(k-1\) shares. However, in our hierarchical scheme, we need to consider an adversary can also pool k or more shares of lower-level participants. Moreover, considering practical use, we present our evaluation of our software implementation.

Keywords

Secret sharing scheme Hierarchical access structure IDA Ideal scheme Software implementation 

Notes

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant Number JP18K11306.

References

  1. 1.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, vol. 48, pp. 313–317 (1979)Google Scholar
  2. 2.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_26CrossRefGoogle Scholar
  4. 4.
    Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((3, n)\)-threshold secret sharing scheme using Exclusive-OR operations. IEICE Trans. Fundam. E91-A(1), 127–138 (2008)Google Scholar
  6. 6.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: On a fast \((k, n)\)-threshold secret sharing scheme. IEICE Trans. Fundam. E91-A(9), 2365–2378 (2008)Google Scholar
  7. 7.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85886-7_31CrossRefGoogle Scholar
  8. 8.
    Kurihara, J., Uyematsu, T.: A novel realization of threshold schemes over binary field extensions. IEICE Trans. Fundam. E94-A(6), 1375–1380 (2011)CrossRefGoogle Scholar
  9. 9.
    Feng, G.-L., Deng, R.-H., Bao, F.: Packet-loss resilient coding scheme with only XOR operations. IEE Proc. Commun. 151(4), 322–328 (2004)CrossRefGoogle Scholar
  10. 10.
    Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An XOR-based erasure-resilient coding scheme. ICSI Technical report TR-95-048 (1995)Google Scholar
  11. 11.
    Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal \((t,n)-\)threshold schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 467–483. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_28CrossRefGoogle Scholar
  12. 12.
    Yamamoto, H.: On secret sharing system using \((k, L, n)\) threshold scheme. IEICE Trans. Fundam. (Jpn. Ed.) J68-A(9), 945–952 (1985). Secret sharing system using \((k, L, n)\) threshold scheme. Electron. Commun. Jpn. (Engl. Ed.) Part I 69(9), 46–54 (1986)Google Scholar
  13. 13.
    Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_20CrossRefGoogle Scholar
  14. 14.
    Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_12CrossRefGoogle Scholar
  15. 15.
    Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((k, L, n)\)-threshold ramp secret sharing scheme. IEICE Trans. Fundam. E92-A(8), 1808–1821 (2009)Google Scholar
  16. 16.
    Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dispersed storage systems. In: 9th USENIX Conference on File and Storage Technologies, pp. 191–202 (2011)Google Scholar
  17. 17.
    Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36(2), 335–348 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052348CrossRefzbMATHGoogle Scholar
  19. 19.
    Béguin, P., Cresti, A.: General short computational secret sharing schemes. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 194–208. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-49264-X_16CrossRefGoogle Scholar
  20. 20.
    Selçuk, A.A., Kaşkaloğlu, K., Özbudak, F.: On hierarchical threshold secret sharing. IACR Cryptology ePrint Archive 2009, 450 (2009)Google Scholar
  21. 21.
    Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_30CrossRefGoogle Scholar
  22. 22.
    Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_45CrossRefGoogle Scholar
  23. 23.
    Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment. In: NBiS-2014, pp. 263–270 (2014)Google Scholar
  24. 24.
    Castiglione, A., et al.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics Secur. 11(4), 850–865 (2016)Google Scholar
  25. 25.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20901-7_2CrossRefGoogle Scholar
  26. 26.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. TCS 154, 283–306 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 148–167. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_11CrossRefGoogle Scholar
  28. 28.
    Plank, J.S., Ding, Y.: Note: correction to the 1997 tutorial on reed-solomon coding. Softw.-Pract. Exp. 35(2), 189–194 (2005)CrossRefGoogle Scholar
  29. 29.
    Shima, K., Doi, H.: A hierarchical secret sharing scheme over finite fields of characteristic 2. J. Inf. Process. 25, 875–883 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Information SecurityYokohamaJapan

Personalised recommendations