Advertisement

On the Complexity of the LWR-Solving BKW Algorithm

  • Hiroki OkadaEmail author
  • Atsushi Takayasu
  • Kazuhide Fukushima
  • Shinsaku Kiyomoto
  • Tsuyoshi Takagi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11396)

Abstract

Duc et al. applied the Blum-Kalai-Wasserman (BKW) algorithm to the learning with rounding (LWR) problem. The number of blocks is a parameter of the BKW algorithm. By optimizing the number of blocks, we can minimize the time complexity of the BKW algorithm. However, Duc et al. did not derive the optimal number of blocks theoretically, but they searched it for numerically. In this paper, we theoretically derive the asymptotically optimal number of blocks and show the minimum time complexity of the algorithm. Furthermore, we derive an equation that relates the Gaussian parameter \(\sigma \) of the LWE problem and the modulus p of the LWR problem. When \(\sigma \) and p satisfy the equation, the asymptotic time complexity of the BKW algorithm to solve the LWE and LWR problems are the same.

Keywords

Lattice Learning with errors Learning with rounding Blum-Kalai-Wasserman algorithm 

References

  1. 1.
    Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_4CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albrecht, M.R., et al.: Estimate all the \(\{\)LWE, NTRU\(\}\) schemes!. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_19CrossRefGoogle Scholar
  4. 4.
    Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 429–445. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_25CrossRefGoogle Scholar
  5. 5.
    Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure ring-LWE based key encapsulation with short ciphertexts. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 29–46. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66402-6_4CrossRefGoogle Scholar
  6. 6.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)Google Scholar
  7. 7.
    Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_4CrossRefGoogle Scholar
  8. 8.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  9. 9.
    Baan, H., et al.: Round2: KEM and PKE based on GLWR. Cryptology ePrint Archive, Report 2017/1183 (2017). https://eprint.iacr.org/2017/1183
  10. 10.
    Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_2CrossRefGoogle Scholar
  11. 11.
    Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_20CrossRefGoogle Scholar
  12. 12.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_42CrossRefGoogle Scholar
  13. 13.
    Bansarkhani, R.E.: LARA - a design concept for lattice-based encryption. Cryptology ePrint Archive, Report 2017/049 (2017). https://eprint.iacr.org/2017/049
  14. 14.
    Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. LMS J. Comput. Math. 17(A), 49–70 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_23CrossRefGoogle Scholar
  17. 17.
    Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367 April 2018Google Scholar
  18. 18.
    Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1006–1018. ACM (2016)Google Scholar
  19. 19.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 575–584. ACM (2013)Google Scholar
  20. 20.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_1CrossRefGoogle Scholar
  21. 21.
    Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! a practical post-quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 160–177. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_9CrossRefGoogle Scholar
  22. 22.
    Cheon, J.H., et al.: Lizard. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/
  23. 23.
    Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89339-6_16CrossRefGoogle Scholar
  25. 25.
    Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_8CrossRefGoogle Scholar
  26. 26.
    Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_13CrossRefGoogle Scholar
  27. 27.
    Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: Innovations in Computer Science (ICS 2010). Tsinghua University Press (2010)Google Scholar
  28. 28.
    Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with sieving. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 323–346. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_12CrossRefGoogle Scholar
  29. 29.
    Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 23–42. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_2CrossRefGoogle Scholar
  30. 30.
    Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice vector problems. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20901-7_10CrossRefzbMATHGoogle Scholar
  31. 31.
    Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_25CrossRefGoogle Scholar
  32. 32.
    Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of solving LWE. Des. Codes Cryptogr. 86(1), 55–83 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Information Technology Laboratory, National Institute of Standards and Technology: Post-Quantum Cryptography. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography. Accessed 31 Jan 2018
  34. 34.
    Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. CoRR abs/1611.06150 (2016)Google Scholar
  35. 35.
    Kaminakaya, K., Kunihiro, N., Takayasu, A.: BKW algorithm for solving LWE Problem. In: Symposium on Cryptography and Information Security, SCIS 2016. IEICE (2016 in Japanese)Google Scholar
  36. 36.
    Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_3CrossRefGoogle Scholar
  37. 37.
    Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_1CrossRefzbMATHGoogle Scholar
  38. 38.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_21CrossRefGoogle Scholar
  39. 39.
    Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36095-4_19CrossRefGoogle Scholar
  40. 40.
    Nguyen, P.Q.: Lattice reduction algorithms: theory and practice. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 2–6. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_2CrossRefGoogle Scholar
  41. 41.
    Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In: Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24847-7_26CrossRefGoogle Scholar
  42. 42.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hiroki Okada
    • 1
    Email author
  • Atsushi Takayasu
    • 2
  • Kazuhide Fukushima
    • 1
  • Shinsaku Kiyomoto
    • 1
  • Tsuyoshi Takagi
    • 2
  1. 1.KDDI Research, Inc.SaitamaJapan
  2. 2.The University of TokyoTokyoJapan

Personalised recommendations