Advertisement

Particle Swarm Optimization: Theory, Literature Review, and Application in Airfoil Design

  • Seyedali MirjaliliEmail author
  • Jin Song Dong
  • Andrew Lewis
  • Ali Safa Sadiq
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 811)

Abstract

The Particle Swarm Optimization (PSO) is one of the most well-regarded algorithms in the literature of meta-heuristics. This algorithm mimics the navigation and foraging behaviour of birds in nature. Despite the simple mathematical model, it has been widely used in diverse fields of studies to solve optimization problems. There is a tremendous number of theoretical works on this algorithm too that has led to a large number of variants, improvements, and hybrids. This chapter covers the inspirations, mathematical equations, and the main algorithm of this technique. Its performance is tested and analyzed on a challenging real-world problem in the field of aerospace engineering.

References

  1. 1.
    Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2017). Grey wolf optimizer: A review of recent variants and applications. Neural Computing and Applications, 1–23.Google Scholar
  2. 2.
    Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.CrossRefGoogle Scholar
  4. 4.
    Storn, R., & Price, K. (1997). Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dorigo, M., & Birattari, M. (2011). Ant colony optimization. In Encyclopedia of machine learning (pp. 36–39). Boston: Springer.Google Scholar
  6. 6.
    Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Boston: Springer.Google Scholar
  7. 7.
    Chitsaz, H., & Aminisharifabad, M. (2015). Exact learning of rna energy parameters from structure. Journal of Computational Biology, 22(6), 463–473.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aminisharifabad, M., Yang, Q., & Wu, X. (2018). A penalized autologistic regression with application for modeling the microstructure of dual-phase high strength steel. Journal of Quality Technology (in-press).Google Scholar
  9. 9.
    Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling salesman problem. In New optimization techniques in engineering (pp. 219–239). Berlin: Springer.CrossRefGoogle Scholar
  10. 10.
    Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14.CrossRefGoogle Scholar
  11. 11.
    Saremi, S., Mirjalili, S., & Lewis, A. (2015). How important is a transfer function in discrete heuristic algorithms. Neural Computing and Applications, 26(3), 625–640.CrossRefGoogle Scholar
  12. 12.
    Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279.CrossRefGoogle Scholar
  13. 13.
    Mostaghim, S., & Teich, J. (2003). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003. SIS 2003 (pp. 26–33). IEEE.Google Scholar
  14. 14.
    Sierra, M. R., & Coello, C. A. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and-dominance. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 505–519). Berlin: Springer.Google Scholar
  15. 15.
    Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In Genetic and Evolutionary Computation Conference (pp. 37–48)CrossRefGoogle Scholar
  16. 16.
    Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3), 287–308.MathSciNetGoogle Scholar
  17. 17.
    Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method for constrained optimization problems. Intelligent TechnologiesTheory and Application: New Trends in Intelligent Technologies, 76(1), 214–220.zbMATHGoogle Scholar
  18. 18.
    Pulido, G. T., & Coello, C. A. C. (2004). A constraint-handling mechanism for particle swarm optimization. In IEEE congress on evolutionary computation (Vol. 2, pp. 1396–1403).Google Scholar
  19. 19.
    Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11–12), 1245–1287.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001 (Vol. 1, pp. 94–100). IEEE.Google Scholar
  21. 21.
    Blackwell, T., & Branke, J. (2004). Multi-swarm optimization in dynamic environments. In Workshops on Applications of Evolutionary Computation (pp. 489–500). Berlin: Springer.Google Scholar
  22. 22.
    Luan, F., Choi, J. H., & Jung, H. K. (2012). A particle swarm optimization algorithm with novel expected fitness evaluation for robust optimization problems. IEEE Transactions on Magnetics, 48(2), 331–334.CrossRefGoogle Scholar
  23. 23.
    Mirjalili, S., Lewis, A., & Mostaghim, S. (2015). Confidence measure: A novel metric for robust meta-heuristic optimisation algorithms. Information Sciences, 317, 114–142.CrossRefGoogle Scholar
  24. 24.
    Mirjalili, S., Lewis, A., & Dong, J. S. (2018). Confidence-based robust optimisation using multi-objective meta-heuristics. Swarm and Evolutionary Computation.Google Scholar
  25. 25.
    Ono, S., Yoshitake, Y., & Nakayama, S. (2009). Robust optimization using multi-objective particle swarm optimization. Artificial Life and Robotics, 14(2), 174.CrossRefGoogle Scholar
  26. 26.
    Mirjalili, S., Lewis, A., & Mirjalili, S A M. (2015) Multi-objective optimisation of marine propellers. Procedia Computer Science, 51, 2247–2256.CrossRefGoogle Scholar
  27. 27.
    Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds number aerodynamics (pp. 1–12). Springer, Berlin, Heidelberg.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Seyedali Mirjalili
    • 1
    Email author
  • Jin Song Dong
    • 1
    • 2
  • Andrew Lewis
    • 1
  • Ali Safa Sadiq
    • 3
  1. 1.Institute for Integrated and Intelligent Systems, Griffith UniversityNathan, BrisbaneAustralia
  2. 2.Department of Computer ScienceSchool of Computing, National University of SingaporeSingaporeSingapore
  3. 3.School of Information TechnologyMonash UniversityBandar SunwayMalaysia

Personalised recommendations