Heated Konin Lakes: Structure, Functioning, and Succession

  • Bogusław Zdanowski
  • Agnieszka Napiórkowska-KrzebietkeEmail author
  • Konrad Stawecki
  • Aleksander Świątecki
  • Roman Babko
  • Elżbieta Bogacka-Kapusta
  • Bartosz Czarnecki
  • Andrzej Kapusta
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 86)


The Konin lakes are a system that has been artificially heated by power stations since 1958 and has continuously been the subject of ecological research. The coolest of the lakes remains Lake Ślesińskie, while the warmest is Lake Licheńskie. Both of the lakes are eutrophic, and their ecological potential is decidedly below good. Low water retention in the lakes facilitates the increase of easily absorbed organic matter flowing in from the catchment area, and the higher temperatures of the waters intensify processes of their decomposition. Summer phytoplankton blooms are noted in both lakes; they are more intense in Lake Licheńskie. A significant increase in primary production, higher cyanobacteria biomass, and the limited development of large cladocerans and copepods and the domination of small rotifers are confirmed in this lake. The lake system is inhabited by approximately 100 alien species. These frequently include invasive plant and animal species such as Vallisneria spiralis, Dreissena polymorpha, Sinanodonta woodiana, and Pseudorasbora parva, which contribute to the structure and functioning of the lakes. The best water quality is in the post-mining water basin, which was created in 2010 by inundating it with Early Cretaceous and Tertiary waters, the physicochemical and biological aspect of which indicate good or maximum ecological potential.


Alien species Phytoplankton blooms Sinanodonta woodiana Vallisneria spiralis 



The material was collected and analyzed primarily as a part of statutory research (S-009) conducted at the Stanisław Sakowicz Inland Fisheries Institute in Olsztyn.


  1. 1.
    Patalas K (1976) Commentary on keynote paper by Dr Ulf Grimas: Same aspects on cooling water discharge and environmental enhancement. Proceedings workshop held at the Chalk River Nuclear Labs October 6–10, 1975, vol 1, pp 161–166Google Scholar
  2. 2.
    Horoszewicz L (1969) The effect of higher temperature on fish. Ekol Pol B 15:299–321Google Scholar
  3. 3.
    Horoszewicz L, Backiel T (1979) Biology of fish as test for heated effluents. Pol Ecol Stud 5:5–120Google Scholar
  4. 4.
    Hillbricht-Ilkowska A, Zdanowski B (1988) Main changes in the Konin lake system (Poland) under the effect of heated-water discharge pollution and fishery. Ekol Pol 36(1-2):5–21Google Scholar
  5. 5.
    Hillbricht-Ilkowska A, Zdanowski B (1988) Changes in lake ekosystems connected with the power-generating industry (the outline of problem); the Konin lakes (Poland) as the study sites. Ekol Pol 36(1–2):23–45Google Scholar
  6. 6.
    Zdanowski B (1994) Characteristics of. heated Konin lakes, pollution sources, main results and conclusions. Arch Pol Fish 2(2):139–160Google Scholar
  7. 7.
    Socha D, Zdanowski B (2001) The aquatic ecosystem near Konin. Bibl Mon Środ, Poznań, pp 1–75 (in Polish)Google Scholar
  8. 8.
    Protasov AA, Zdanowski B (2003) Determination of impacts of nuclear and thermal power plants on hydroecosystems using expert assessment. Hydrobiol J 39(1):48–58CrossRefGoogle Scholar
  9. 9.
    McCoy WF (1991) Microbial fouling control in heat exchangers. Trans Am Nucl Soc 64:63Google Scholar
  10. 10.
    Afanasiev SA, Sidersky AV, Shatokhina AV (1990) Fouling in the intake conduit of the atomic power plant as a factor of biological interferences. Gidrobiol Zh 26(2):25–29. in RussianGoogle Scholar
  11. 11.
    Afanasiev SA, Romanova EG, Slepnev AE (1991) Bacterial fouling of heat exchange equipment. Gidrobiol Zh 27(5):56–61. in RussianGoogle Scholar
  12. 12.
    Afanasiev SA, Świątecki A, Zdanowski B (1998) Biodisturbances in heated systems – technical and ecological consequence. In: Zdanowski B (ed) Konin lakes – 40 years of study. Current state and conclusions for protect. Bibl Mon Środ, Konin, pp 1–124 (in Polish)Google Scholar
  13. 13.
    Stawecki K, Zdanowski B, Pyka JP (2013) Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch Pol Fish 21:331–342Google Scholar
  14. 14.
    Korycka A, Zdanowski B (1976) The influence of heated effluent waters on the water chemism of Konin lakes. Rocz Nauk Roln Ser H 97(3):89–107. in PolishGoogle Scholar
  15. 15.
    Zdanowski B, Korycka A, Gębicka A (1988) Long-term variation in habitat and trophic factors in the Konin lakes (Poland) under the influence of heated-water discharge and pollution. Ekol Pol 36(1–2):47–77Google Scholar
  16. 16.
    Zdanowski B, Prusik S (1994) Temperature-oxygen relations and chemical composition of water in heated Konin lakes. Arch Pol Fish 2:161–178Google Scholar
  17. 17.
    Pyka JP, Zdanowski B, Stawecki K (2013) Long-term trends in changes of the chemical composition of waters in lakes heated by electric power plants. Arch Pol Fish 21:343–355Google Scholar
  18. 18.
    Dunalska J, Pyka JP, Zdanowski B, Świątecki A (2007) Carbon dynamics in a heated water system (Wielkopolsko-Kujawskie Lake District, Poland). Arch Pol Fish 15(4):295–307Google Scholar
  19. 19.
    Marchlik WD, Świątecki A, Stawecki K (2005) Microbiological destruction dynamics in heated Konin lake. Acta Universitatis Nicolai Copernici Limnological Papers XXV, vol 113, pp 75–83Google Scholar
  20. 20.
    Świątecki A, Zdanowski B (2007) The seasonal dynamics of organic matter remineralization by bacterial consortia in the heated Konin lakes. Arch Pol Fish 15(4):309–320Google Scholar
  21. 21.
    Świątecki A, Zdanowski B, Dunalska J, Górniak D (2007) The dynamics of bacterioplankton versus resources of organic carbon in the heated Konin lakes. Arch Pol Fish 15(4):321–334Google Scholar
  22. 22.
    Spodniewska I (1984) Biomass and structure of phytoplankton in Konin lakes in the years 1976-1980. Ekol Pol 32(2):289–305Google Scholar
  23. 23.
    Sosnowska J (1987) Effect of heated effluents on the phytoplankton in some lakes near Konin. Rocz Nauk Roln Ser H 101(3):1–130. in PolishGoogle Scholar
  24. 24.
    Simm AT (1988) Changes in the composition and quantitative relations of the phytoplankton in heated lakes near Konin (Poland). Ekol Pol 36(1–2):97–113Google Scholar
  25. 25.
    Socha D (1994) Quantitative and qualitative changes of the phytoplankton in heated Konin lakes. Arch Pol Fish 2(2):219–234Google Scholar
  26. 26.
    Socha D (1994) Changes in the phytoplankton of warmed-up lakes near Konin (Central Poland) in 1987-1990. Idee Ekol 5 Ser Zeszyty 2:1–88. in PolishGoogle Scholar
  27. 27.
    Socha D (1997) Spatial and seasonal phytoplankton diversity in Licheńskie and Ślesińskie lakes, Konińskie District, in 1991-1993. Arch Pol Fish 5(1):117–136Google Scholar
  28. 28.
    Socha D, Hutorowicz A (2009) Changes in the quantitative relations of the phytoplankton in heated lakes. Arch Pol Fish 17(4):239–251CrossRefGoogle Scholar
  29. 29.
    Napiórkowska-Krzebietke A (2009) Diversity and dynamics of phytoplankton in lakes Licheńskie and Ślesińskie. Arch Pol Fish 17(4):253–265CrossRefGoogle Scholar
  30. 30.
    Zdanowski B (1994) Long term changes of phosphorus and nitrogen content and of trophic status in heated Konin lakes. Arch Pol Fish 2:179–191Google Scholar
  31. 31.
    Świątecki A (1994) Sanitary and bacteriological status of heated Konin lakes. Arch Pol Fish 2(2):207–218Google Scholar
  32. 32.
    Nebaeus M (1984) Algal water-bloom under ice-cover. Verh Internat Verein Limnol 22:719–724Google Scholar
  33. 33.
    Napiórkowska-Krzebietke A, Dunalska J (2015) Phytoplankton-based recovery requirement for urban lakes in the implementation of the Water Framework Directive’s ecological targets. Oceanol Hydrobiol St 44(1):109–119. CrossRefGoogle Scholar
  34. 34.
    Patalas K (1970) Primary and secondary production in a lake heated by thermal power plant. Proceeding of the 1970 annual technical meeting of the institute of environmental sciences, Boston, pp 267–271Google Scholar
  35. 35.
    Hillbricht-Ilkowska A, Zdanowski B, Ejsmont-Karabin J, Karabin A, Węgleńska T (1976) Primary and secondary production of lakes with heated waters. Rocz Nauk Roln Ser H 97:69–88. in PolishGoogle Scholar
  36. 36.
    Zdanowski B (1976) Long-term changes of the pelagic primary production in heated lakes. Rocz Nauk Roln Ser H 97(3):123–139. in PolishGoogle Scholar
  37. 37.
    Zdanowski B (1988) Long-term and seasonal changes in the primary production and destruction in heated lakes near Konin (Poland). Ekol Pol 36:79–95Google Scholar
  38. 38.
    Heinonen P (1980) Quantity and composition of phytoplankton in Finnish island waters. Publ Wat Res 37:1–91Google Scholar
  39. 39.
    Babko R, Fyda J, Kuzmina T, Hutorowicz A (2010) Ciliates on the macrophytes in industrially heated lakes (Kujawy Lakeland, Poland). Vestnik Zoologii 44:483–493CrossRefGoogle Scholar
  40. 40.
    Foissner W, Berger H, Kohmann F (1992) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band II: Peritrichida, Heterotrichida, Odontostomatida – Informationsberichte des Bayer. Landesamt für Wasserwirtschaft 5/92:1–502Google Scholar
  41. 41.
    Lynn DH (2008) The ciliated protozoa. Characterization, classification, and guide to the literature. Springer Science+Business Media B.V., Berlin, p 605Google Scholar
  42. 42.
    Tunowski J (1994) The effect of heating and water exchange on the zooplankton composition in heated Konin lakes. Arch Pol Fish 2:235–255Google Scholar
  43. 43.
    Feniova IY, Razlutskij VI, Palash AL, Tunowsky J, Sysova EA, Dzialowski AR (2014) Cladoceran community structure in three meso-eutrophic Polish lakes with varying thermal regimes. Limnetica 33:13–30Google Scholar
  44. 44.
    Tunowski J (1988) Zooplankton losses during the passing through the cooling system of a power station. Ekol Pol 36:231–243Google Scholar
  45. 45.
    Hillbricht-Ilkowska A, Zdanowski B (1978) Effect of thermal effluents and retention time on lake functioning and ecological efficiencies in plankton communities. Int Rev Ges Hydrobiol 63(5):609–617CrossRefGoogle Scholar
  46. 46.
    Hillbricht-Ilkowska A, Ejsmont-Karabin J, Węgleńska T (1988) Long-term changes in the composition, productivity and trophic efficiency in the zooplankton community of heated lakes near Konin (Poland). Ekol Pol 36:5–21Google Scholar
  47. 47.
    Hillbricht-Ilkowska A, Simm AT (1988) Spatial pattern of temperature, oxygen and nutrient concentration in two lakes of different heated-water discharge systems. Ekol Pol 36(1-2):165–182Google Scholar
  48. 48.
    Bogacka-Kapusta E, Kapusta A (2013) Spatial and diurnal distribution of cladocera in beds of invasive Vallisneria spiralis and open water in heated lake. Acta Zool Bulg 65(2):225–231Google Scholar
  49. 49.
    Ejsmont-Karabin J, Węgleńska T (1988) Disturbances in zooplankton seasonality in lake Gosławskie (Poland) affected by permanent heating and heavy fish stocking. Ekol Pol 36(1-2):245–260Google Scholar
  50. 50.
    Bogacka E, Paturej E (2006) Responses of zooplankton communities to elevated water temperature in lakes affected by water discharge from power stations. Acta Sci Pol Formatio Circumiectus 5(2):111–120Google Scholar
  51. 51.
    Ejsmont-Karabin J, Hutorowicz A (2011) Rotifera communities associated with invasive Vallisneria spiralis (Hydrocharitaceae) versus native macrophytes in the lakes heated by power stations (Konin lakes, W. Poland). Pol J Ecol 59:569–576Google Scholar
  52. 52.
    Ejsmont-Karabin J (2011) Does invasion of Vallisneria spiralis L. promote appearance of rare and new rotifer (Rotifera) species in littoral of the lakes heated by power station (Konin Lakes, W. Poland)? Pol J Ecol 59:201–207Google Scholar
  53. 53.
    Leszczyński L (1976) The influence of effluent heated waters on the fauna of lakes in the vicinity of Konin. I. Quantitative relations and qualitative composition of the bottom fauna of the Konin lakes complex. Rocz Nauk Roln Ser H 97(3):7–27. in PolishGoogle Scholar
  54. 54.
    Berger L, Dzięczkowski A (1977) Mollusca. In: Wróblewski A (ed) Bottom fauna of heated Konin lakes, vol 7. Monografie Fauna Polski, PWN, Warszawa, pp 151–179Google Scholar
  55. 55.
    Protasov AA, Afanasjev SA, Sinicyna OO, Zdanowski B (1994) Composition and functioning of benthic communities. In: Zdanowski B (ed) Ecological disturbances in heated Konin lakes, vol 2(2), Arch Ryb Pol, pp 257–284Google Scholar
  56. 56.
    Protasov AA, Zdanowski B, Sinicyna OO, Afanasjev SA, Tunowski J (1997) Structure and functioning of zooperiphyton and benthos communities of the channels of heated lakes of konińskie district. Arch Pol Fish 5:77–99Google Scholar
  57. 57.
    Ciemiński J, Zdanowski B (2009) Changes in the zoobenthos structure in a system of heated lakes in central Poland. Arch Pol Fish 17:221–238CrossRefGoogle Scholar
  58. 58.
    Kasprzak K (1977) Hirudinea. In: Wróblewski A (ed) Bottom fauna of the heated Konin Lakes, vol 7, Monogr Fauny Pol, pp 147–150 (in Polish)Google Scholar
  59. 59.
    Biesiadka E (1977) Coleoptera. In: Wróblewski A (ed) Bottom fauna of the heated Konin lakes, vol 7, Monogr Fauny Pol, pp 259–280 (in Polish)Google Scholar
  60. 60.
    Biesiadka E (1977) Hydracarina. In: Wróblewski A (ed) Bottom fauna of the heated Konin lakes, vol 7, Mogr Fauny Pol, pp 281–350 (in Polish)Google Scholar
  61. 61.
    Najberek K, Solarz W (2008) Konin Lakes as hot spot for biological invasions in Poland. In: Głowaciński WZ, Okarma H, Pawłowski J, Solarz W (eds) Book of invasive alien species in Polish fauna. Wyd Intern Instytutu Ochrony Przyrody PAN, Kraków, pp 615–620 (in Polish).
  62. 62.
    Kapusta A, Bogacka-Kapusta E (2015) Non-native fish species in heated lakes: origins and present status. Arch Pol Fish 23:121–129CrossRefGoogle Scholar
  63. 63.
    Gąbka M (2002) Vallisneria spiralis (Hydrocharitaceae) – a new species to the Polish flora. Fragm Flor Geobot Polonica 9:76–73. in PolishGoogle Scholar
  64. 64.
    Piechocki A, Wawrzyniak-Wydrowska B, Zdanowski B (2003) Melanoides tuberculatus (O. F. Müller, 1774) (Orthogastropoda: Thiaridae), a gastropod speciec new for the fauna of Poland. Folia Malacol 11(1/2):39–41CrossRefGoogle Scholar
  65. 65.
    Kraszewski A, Zdanowski B (2007) Sinanodonta woodiana (Lea, 1834) (Mollusca) – a new mussel species in Poland: occurrence and habitat preferences in a heated lake system. Pol J Ecol 55(2):337–356Google Scholar
  66. 66.
    Ciepielewski W (1994) Long-term changes in commercial fish catches and bream and roach biomass in heated Konin lakes. Arch Pol Fish 2(2):345–358Google Scholar
  67. 67.
    Lowden RM (1982) An approach to the taxonomy of Vallisneria L. (Hydrocharitaceae). Aquat Bot 13:269–298CrossRefGoogle Scholar
  68. 68.
    Les DH, Jacobs SW, Tippery NP, Chen L, Moody ML, Wilstermann-Hildebrand M (2008) Systematics of Vallisneria (Hydrocharitaceae). Syst Bot 33:49–65CrossRefGoogle Scholar
  69. 69.
    Kapusta A (2004) Relationship between the abundance of larvae and juvenile stage assemblages and the occurrence of macrophytes in the shallow littoral of Lake Licheńskie. Arch Pol Fish 12:163–176Google Scholar
  70. 70.
    Hutorowicz A, Dziedzic J, Kapusta A (2006) Nowe stanowisko Vallisneria spiralis (Hydrocharitaceae) w jeziorach konińskich (Pojezierze Kujawskie). Fragm Flor Geob Pol 13:89–94Google Scholar
  71. 71.
    Hutorowicz A, Hutorowicz J, Brzozowska R (2007) Chemical composition of the top-layer bottom deposits from underneath assemblages of the subtropical species Vallisneria spiralis L. in the phytolittoral zone of two heated lakes. Arch Pol Fish 15:457–464Google Scholar
  72. 72.
    Kapusta A, Bogacka E (2006) Diel variability in the occurrence of juvenile fish in the shallow littoral zone: do macrophytes impact the structure of fish assemblages? Arch Pol Fish 14:301–308Google Scholar
  73. 73.
    Stańczykowska A (1976) Occurrence and individual growth of Dreissena polymorpha (Pall.) in lakes included in a cooling system. Rocz Nauk Roln Ser H 97(3):109–123. in PolishGoogle Scholar
  74. 74.
    Kornobis S (1977) Ecology of Dreissena polymorpha (Pall.) (Dreissenidae, Bivalvia) in lakes receiving heated water discharges. Pol Arch Hydrobiol 24:531–545Google Scholar
  75. 75.
    Stańczykowska A, Lewandowski K, Ejsmont-Karabin J (1988) The abundance and distribution of the mussel Dreissena polymorpha (Pall.) in heated lakes near Konin (Poland). Ekol Pol 36(1-2):261–276Google Scholar
  76. 76.
    Sinicyna OO, Zdanowski B (2007) Development of the zebra mussel, Dreissena polymorpha (Pall.), population in a heated lakes ecosystem. I. Changes in population structure. Arch Pol Fish 15(4):369–385Google Scholar
  77. 77.
    Sinicyna OO, Zdanowski B (2007) Development of the zebra mussel, Dreissena polymorpha (Pall.), population in a heated lakes ecosystem. II. Life strategy. Arch Pol Fish 15(4):387–400Google Scholar
  78. 78.
    Soroka M, Zdanowski B (2001) Morphological and genetic variability of the population of Anodonta woodiana (Lea, 1834) occurring in the heated Konin lakes system. Arch Pol Fish 9(2):239–252Google Scholar
  79. 79.
    Sinicyna O, Protasov A, Zdanowski B, Kraszewski A (2001) Ecological niche of Dreissena polymorpha (Pall.) aggregations in the heated Konin lakes system. Arch Pol Fish 9(1):133–142Google Scholar
  80. 80.
    Kiss A (1995) The propagation, growth and biomass of the Chinese huge mussels (Anodonta woodiana woodiana 1984) in Hungary. Privat, Second edn. University of Agricultural Sciences of Godollo, Hungary, pp 1–33Google Scholar
  81. 81.
    Kraszewski A (2007) The continuing expansion of Sinanodonta woodiana (Lea, 1834) (Bivalvia, Unionidae) in Poland and Europe. Folia Malacol 15(2):65–69CrossRefGoogle Scholar
  82. 82.
    Witkowski A (2009) On the expansion and occurrence of an invasive species – Pseudorasbora parva (Temminck et Schlegel, 1846) (Teleostei: Cyprinidae: Gobioninae) in Poland. Fragmenta Faunistica 52:25–32CrossRefGoogle Scholar
  83. 83.
    Gozlan RE, Andreou D, Asaeda T, Beyer K, Bouhadad R, Burnard D, Caiola N, Cakic P, Djikanovic V, Esmaeili HR, Falka I, Golicher D, Harka A, Jeney G, Kovác V, Musil J, Nocita A, Povz M, Poulet N, Virbickas T, Wolter C, Tarkan SA, Tricarico E, Trichkova T, Verreycken H, Witkowski A, Zhang CG, Zweimueller I, Britton RJ (2010) Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasions. Fish Fish 11:315–340CrossRefGoogle Scholar
  84. 84.
    Jackson MC, Britton JR (2013) Variation in the trophic overlap of invasive Pseudorasbora parva and sympatric cyprinid fishes. Ecol Freshw Fish 22:654–657CrossRefGoogle Scholar
  85. 85.
    Kapusta A, Bogacka-Kapusta E, Czarnecki B (2008) The significance of stone moroko, Pseudorasbora parva (Temmick and Schlegel), in the small-sized fish assemblages in the littoral zone of the heated Lake Licheńskie. Arch Pol Fish 16:49–62CrossRefGoogle Scholar
  86. 86.
    Kapusta A, Kutsokon Y, Bogacka-Kapusta E (2014) Comparisons of morphometrics recently established population of topmouth gudgeon (Pseudorasbora parva) from a heated lakes in Poland. Acta Universitatis Prešoviensis Folia Oecol 6:4–8Google Scholar
  87. 87.
    Záhorská E, Balážová M, Šúrová M (2013) Morphology, sexual dimorphism and size at maturation in topmouth gudgeon (Pseudorasbora parva) from the heated Lake Licheńskie (Poland). Knowl Manag Aquat Ec 411:07. CrossRefGoogle Scholar
  88. 88.
    Záhorská E, Kováč V, Švolíková K, Kapusta A (2014) Reproductive parameters of topmouth gudgeon (Pseudorasbora parva) from a heated Lake Licheńskie (Poland). Cent Eur J Biol 9:212–219Google Scholar
  89. 89.
    European Commission (2000) Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. Off J 2000 L 327/1, European Commission, BrusselsGoogle Scholar
  90. 90.
    Regulation of the Minister of the Environment of 21 July 2016 on status classification of surface water bodies and environmental quality standards for priority substances. Off J Laws, Item 1187 (in Polish)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bogusław Zdanowski
    • 1
  • Agnieszka Napiórkowska-Krzebietke
    • 1
    Email author
  • Konrad Stawecki
    • 1
  • Aleksander Świątecki
    • 2
  • Roman Babko
    • 3
  • Elżbieta Bogacka-Kapusta
    • 1
  • Bartosz Czarnecki
    • 1
  • Andrzej Kapusta
    • 1
  1. 1.Department of Ichthyology, Hydrobiology and Aquatic EcologyInland Fisheries Institute in OlsztynOlsztynPoland
  2. 2.Faculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  3. 3.Institute of Zoology, National Academy of SciencesKyivUkraine

Personalised recommendations