Advertisement

Internal Phosphorus Loading in Eutrophic Lakes in Western Poland

  • Katarzyna Kowalczewska-MaduraEmail author
  • Renata Dondajewska
  • Ryszard Gołdyn
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 86)

Abstract

We hypothesized that the variability of P internal loading in lakes and reservoirs depends on the trophic state of analysed waterbodies, as well as spatial (different water depths) and temporal (season) aspect in particular waterbodies. Additionally, year-to-year changes of P loading in lakes restored with variable methods (sustainable restoration, P inactivation with iron compounds and magnesium chloride, nitrate treatment and effective microorganisms (EM) application) were expected. To verify these assumptions, we have analysed the process of internal P loading in 40 waterbodies situated in Western Poland, based on the ex situ experiments on intact sediment cores, collected from different water depths in various seasons. Additionally, basic sediment characteristics (TP and its fraction content, organic matter, SRP and TP in pore water and water above sediments) were studied. The most intensive P release from sediments into water column was noted in summer, especially at greater depths and in heavily eutrophicated lakes. Internal P loading in restored lakes usually decreased, apart from lakes in which EM were used.

Keywords

Bottom sediments Eutrophic lakes Internal loading Phosphorus 

Notes

Acknowledgements

This study was supported by (1) the Ministry of Science and Higher Education (Poland), grant no. N 305 108 31/3632 and partly by grant no. NN305 372838; (2) KBN, grant no. 3T09D 01527; and (3) the Fund for the statutory activities of the Department of Water Protection.

References

  1. 1.
    Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediments-water interface. Hydrobiologia 170:229–244CrossRefGoogle Scholar
  2. 2.
    Golterman HL (1995) The role of iron hydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297:43–54CrossRefGoogle Scholar
  3. 3.
    Wiśniewski RJ (1995) Rola zasilania wewnętrznego w eutrofizacji zbiorników zaporowych [The role of internal loading in dam reservoirs eutrophication]. In: Zalewski M (ed) Procesy biologiczne w ochronie i rekultywacji nizinnych zbiorników zaporowych [Biological processes in protection and restoration of lowland dam reservoirs] Biblioteka Monitoringu Środowiska, WIOŚ Łódź, pp 61–70. PolishGoogle Scholar
  4. 4.
    Kentzer A (2001) Fosfor i jego biologicznie dostępne frakcje w osadach jezior o różnej trofii [Phosphorus and its bioavailable fractions in the sediments of lakes of different trophy] Nicolaus Copernicus University Press, Toruń, Dissertations. 111 p. PolishGoogle Scholar
  5. 5.
    Wang H, Appan A, Gulliver JS (2003) Modelling of phosphorus dynamics in aquatic sediments: I-model development. Water Res 37(16):3928–3938CrossRefGoogle Scholar
  6. 6.
    Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci World 1:427–442CrossRefGoogle Scholar
  7. 7.
    Søndergaard M, Wolter KD, Ripl W (2002) Chemical treatment of water and sediments with special reference to lakes. Handbook of ecological restoration, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Boström B, Ahlgren I, Bell R (1982) Internal nutrient loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh Internat Verein Limnol 22:3335–3339Google Scholar
  9. 9.
    Jeppesen E, Kristensen P, Jensen JP, Søndergaard M, Mortensen E, Lauridsen T (1991) Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Mem Ist Ital Idrobiol 48:127–148Google Scholar
  10. 10.
    Gonsiorczyk T, Casper P, Koschel R (1997) Variations of phosphorus release from sediments in stratified lakes. Water Air Soil Pollut 99:427–434Google Scholar
  11. 11.
    Søndergaard M, Jensen JP, Jeppesen E (1999) Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409:145–152CrossRefGoogle Scholar
  12. 12.
    Jańczak J (1996) Atlas jezior Polski. [The atlas of Polish lakes] Bogucki Publishing, Poznań. PolishGoogle Scholar
  13. 13.
    Szyper H, Romanowicz W, Gołdyn R (2000) Zagrożenie jezior Wielkopolskiego Parku Narodowego przez czynniki zewnętrzne [The threats to Wielkopolski National Park lakes by external factors] In: Burchardt L (ed) Ekosystemy wodne Wielkopolskiego Parku Narodowego [Water ecosystems of Wielkopolski National Park]. Poznań. PolishGoogle Scholar
  14. 14.
    Choiński A (2006) Katalog jezior Polski [The catalog of Polish lakes]. UAM Scientific Publishing, Poznań. PolishGoogle Scholar
  15. 15.
    Gołdyn R, Grabia J (1998) Program ochrony wód rzeki Cybiny [Protection program of waters in the Cybina River]. Department of Environmental Protection, Poznań Town’s Authority, Poznań. PolishGoogle Scholar
  16. 16.
    Pułyk M, Tybiszewska E (1995) Raport o stanie środowiska w województwie poznańskim w roku 1994. [The report on environment state in poznań province in 1994] Biblioteka Monitoringu Środowiska, Poznań. PolishGoogle Scholar
  17. 17.
    Gołdyn R, Messyasz B, Domek P, Windhorst W, Hugenschmidt C, Nicoara M, Plavan G (2013) The response of Lake Durowskie ecosystem to restoration measures. Carpath J Earth Environ Sci 8(3):43–48Google Scholar
  18. 18.
    Rosińska J, Kozak A, Dondajewska R, Gołdyn R (2017) Cyanobacterial blooms before and during the restoration process of a shallow urban lake. J Environ Manage 198:340–347CrossRefGoogle Scholar
  19. 19.
    Sobczyński T, Joniak T, Pronin E (2012) Assessment of multi-directional experiment to restore Lake Góreckie (Western Poland) with particular focus on oxygen and light conditions: first results. Pol J Environ Stud 21(4):1025–1031Google Scholar
  20. 20.
    Wiśniewski R, Ślusarczyk J, Kaliszewski T, Szulczewski A, Nowacki P (2010) “Proteus”, a new device for application of coagulants directly to sediment during its controlled resuspension. Verh Internat Verein Limnol 30(9):1421–1424Google Scholar
  21. 21.
    Gołdyn R, Podsiadłowski S, Dondajewska R, Kozak A (2014) The sustainable restoration of lakes – towards the challenges of the Water Framework Directive. Ecohydrol Hydrobiol 14(1):67–74CrossRefGoogle Scholar
  22. 22.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R (2011) Seasonal changes of phosphorus release from the bottom sediments of Rusałka Lake during the restoration process. Ecol Chem Eng A 18(2):219–224Google Scholar
  23. 23.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R (2008) Influence of iron treatment on phosphorus internal loading from bottom sediments of the restored lake. Limnol Rev 8(4):177–182Google Scholar
  24. 24.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R, Podsiadłowski S (2017) The influence of restoration measures on phosphorus internal loading from the sediments of a hypereutrophic lake. Environ Sci Pollut Res 24(16):14417–14429.  https://doi.org/10.1007/s11356-017-8997-2 CrossRefGoogle Scholar
  25. 25.
    Dondajewska R, Kozak A, Kowalczewska-Madura K, Budzyńska A, Podsiadłowski S, Tomkowiak A (2018) The response of a shallow hypertrophic lake to innovative restoration measures – Uzarzewskie Lake case study. Ecol Eng 121:72–82.  https://doi.org/10.1016/j.ecoleng.2017.07.010 CrossRefGoogle Scholar
  26. 26.
    Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  27. 27.
    ISO 2004. 6878:2004 Water quality – determination of phosphorus – ammonium molybdate spectrometric methodGoogle Scholar
  28. 28.
    Psenner R, Boström B, Dinka M, Pettersson K, Pucsko R, Sager M (1988) Fractionation of phosphorus in suspended matter and sediment. Arch Hydrobiol Beih Ergebn Limnol 30:83–112Google Scholar
  29. 29.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R (2009) Possibilities of phosphorus release/accumulation in the bottom sediments of chosen Wielkopolska and Pomeranian Lakes. In: Marszelewski W (ed) Anthropogenic and natural transformations of lakes, vol 3. PTLim, Toruń, pp 129–134Google Scholar
  30. 30.
    Kowalczewska-Madura K, Gołdyn R, Dera M (2015) Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecol Eng 74:187–195CrossRefGoogle Scholar
  31. 31.
    Kowalczewska-Madura K, Gołdyn R, Bogucka J, Strzelczyk K (2019) Impact of environmental variables on spatial and seasonal internal phosphorus loading in a mesoeutrophic lake. Int J Sediment Res 34:14–26.  https://doi.org/10.1016/j.ijsrc.2018.08.008 CrossRefGoogle Scholar
  32. 32.
    Dondajewska R (2008) Internal phosphorus loading form bottom sediments of a shallow preliminary reservoir. Oceanol Hydrobiol Stud 37(2):89–97CrossRefGoogle Scholar
  33. 33.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R (2010) a. Internal phosphorus loading in selected lakes of the Cybina River valley. Oceanol Hydrobiol Stud 39(3):35–45Google Scholar
  34. 34.
    Kowalczewska-Madura K, Gołdyn R, Dondajewska R (2010) b. The bottom sediments of Lake Uzarzewskie – a phosphorus source or sink? Oceanol Hydrobiol Stud 39(3):81–91Google Scholar
  35. 35.
    Kowalczewska-Madura K, Gołdyn R, Dondajewska R (2010) c. Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanol Hydrobiol Stud 39(4):135–144CrossRefGoogle Scholar
  36. 36.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R, Kozak A, Messyasz B (2018) Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water Air Soil Pollut 229(280).  https://doi.org/10.1007/s11270-018-3937-4
  37. 37.
    Ishikawa M, Nishimura H (1989) Mathematical model of phosphate release rate from sediments considering the effect of dissolved oxygen in overlying water. Water Res 23:351–359CrossRefGoogle Scholar
  38. 38.
    Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. Int Rev Hydrobiol 93(4-5):415–432CrossRefGoogle Scholar
  39. 39.
    Kleeberg A, Dudel GE (1997) Changes in extent of phosphorus release in a shallow lake (Lake Grosser Muggelsee; Germany, Berlin) due to climatic factors and load. Mar Geol 139:61–75CrossRefGoogle Scholar
  40. 40.
    Golterman HL (2004) The chemistry of phosphate and nitrogen compounds in sediments. Kluwer Academic Publishers, DordrechtGoogle Scholar
  41. 41.
    Søndergaard M, Bjerring R, Jeppensen E (2012) Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710(1):95–107CrossRefGoogle Scholar
  42. 42.
    Messyasz B, Gąbka M, Barycki J, Nowicki G, Lamentowicz Ł, Goździcka-Józefiak A, Rybak A, Dondajewska R, Burchardt L (2015) Phytoplankton, culturable bacteria and their relationships along environmental gradients in a stratified eutrophic lake. Carpath J Earth Environ Sci 10(1):41–52Google Scholar
  43. 43.
    Sobczyński T, Joniak T (2013) The variability and stability of water chemistry in a deep temperate lake: results of long-term study of eutrophication. Pol J Environ Stud 22(1):227–237Google Scholar
  44. 44.
    Kowalczewska-Madura K, Gołdyn R (2009) The internal loading of phosphorus from the sediments of Swarzędzkie Lake (Western Poland). Pol J Environ Stud 18(4):635–643Google Scholar
  45. 45.
    Kelderman P (1984) Sediment – water exchange in Lake Grevelingen under different environmental conditions. Neth J Sea Res 18:286–311CrossRefGoogle Scholar
  46. 46.
    Forsberg C (1989) Importance of sediments in understanding nutrient cycling in lakes. Hydrobiologia 176/177:263–277CrossRefGoogle Scholar
  47. 47.
    Ramm K, Scheps V (1997) Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 342/343:43–53CrossRefGoogle Scholar
  48. 48.
    Katsev S, Dittrich M (2013) Modelling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol Model 251:246–259CrossRefGoogle Scholar
  49. 49.
    Frodge JD, Thomas GL, Pauley GB (1991) Sediments phosphorus loading beneath dense canopies of aquatic macrophytes. Lake Reserv Mange 7:61–71CrossRefGoogle Scholar
  50. 50.
    Stephen D, Moss B, Philips G (1997) Do rooted macrophytes increase sediment phosphorus release. Hydrobiologia 342:27–34CrossRefGoogle Scholar
  51. 51.
    Kozak A, Rosińska J, Gołdyn R (2018) Changes in phytoplankton structure due to prematurely limited restoration treatments. Pol J Environ Stud 27(3):1097–1103CrossRefGoogle Scholar
  52. 52.
    Clavero V, Garcia-Sanchez MJ, Niell FX, Fernandez JA (1997) Influence of sulphate enrichment on the carbon dioxide and phosphate fluxes across the sediment-water interface. Hydrobiologia 345:59–69CrossRefGoogle Scholar
  53. 53.
    Higa T (1995) What is EM technology. College of Agriculture, University of Ryukyus, Okinawa, JapanGoogle Scholar
  54. 54.
    Kowalczewska-Madura K, Gołdyn R (2005) Phosphorus content of bottom sediments in the Swarzędzkie Lake. Verh Internat Verein Limnol 29:1063–1068Google Scholar
  55. 55.
    Kufel L, Biardzka E, Strzałek M (2013) Calcium carbonate incrustation and phosphorus fractions in five charophyte species. Aquat Bot 109:54–57CrossRefGoogle Scholar
  56. 56.
    Nürnberg GK (2009) Assessing internal phosphorus load – problems to be solved. Lake Reserv Manage 25:419–432CrossRefGoogle Scholar
  57. 57.
    Katsev S, Tsandev I, L’Heureux I, Rancourt DG (2006) Factors controlling long-term phosphorus efflux from lake sediments: exploratory reactive-transport modeling. Chem Geol 234:127–147CrossRefGoogle Scholar
  58. 58.
    Ignatieva NV (1996) Distribution and release of sedimentary phosphorus in Lake Ladoga. Hydrobiologia 322:129–136CrossRefGoogle Scholar
  59. 59.
    Kowalczewska-Madura K, Gołdyn R (2012) Spatial and seasonal variability of pore water phosphorus concentration in shallow Lake Swarzędzkie, Poland. Environ Monit Assess 184:1509–1516CrossRefGoogle Scholar
  60. 60.
    Kowalczewska-Madura K, Dondajewska R, Gołdyn R (2007) Changes of phosphorus concentration in bottom sediments and in overlying water of two eutrophicated lakes in Wielkopolska Region. Limnol Rev 7(4):201–207Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Katarzyna Kowalczewska-Madura
    • 1
    Email author
  • Renata Dondajewska
    • 1
  • Ryszard Gołdyn
    • 1
  1. 1.Department of Water Protection, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations