Advertisement

Trophic State, Eutrophication, and the Threats for Water Quality of the Great Mazurian Lake System

  • Waldemar Siuda
  • Karolina Grabowska
  • Tomasz Kaliński
  • Bartosz Kiersztyn
  • Ryszard J. ChróstEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 86)

Abstract

One of the greatest threats to water quality is accelerated eutrophication, resulting from human activity, like the high intensity of tourism, surface runoffs from fertilized fields, and municipal pollution. Water eutrophication manifests as excessive growth of phytoplankton caused by overabundant nitrogen, phosphorus, and other nutrient supply which causes deterioration of water quality related to the amount of bacterial biomass in eutrophicated water reservoirs. The Great Mazurian Lake System (GMLS) is a chain of lakes located in mesoregion of the Great Mazurian Lakes in the Northeastern Poland. All lakes of the GMLS are connected by natural or artificial channels built in the eighteenth and nineteenth centuries and nowadays create widely spilled, long (the easiest route from northern to southern edge is about 110 km) gutter unique on the scale of the continent. The lakes of GMLS are of glacial origin. During the last five decades, all lakes of the GMLS passed different levels of eutrophication, thus significantly changing their trophic states. This report describes past and present trophic conditions of lakes of GMLS and analyzes environmental factors responsible for eutrophication of their waters. Eutrophication processes are not only responsible for high nutrients levels in lakes, extensive growth of phytoplankton biomass and productivity, cyanobacterial predominance, etc., but eutrophication is also responsible and connected to several threats for water quality. Presence of pathogenic bacteria, as well as the potential presence of many antibiotic-resistant bacteria in lakes of the GMLS, is discussed.

Keywords

Antibiotic resistance Eutrophication Lakes Pathogenic bacteria 

Notes

Acknowledgments

These studies were financially supported by the National Science Centre, Poland, grant OPUS 2015/17/B/NZ9/01552 awarded to R.J. Chróst and grant NN304 080135 awarded to W. Siuda. Field studies were performed in the Research Station in Mikołajki of Nencki Institute of Experimental Biology of Polish Academy of Sciences.

References

  1. 1.
    Siuda W, Kaliński T, Kauppinen ES, Chróst RJ (2014) Eutrofizacja południowej części kompleksu Wielkich Jezior Mazurskich w latach 1977–2011. Technol Wody 35:48–62Google Scholar
  2. 2.
    Skibniewski L, Mikulski Z (1954) Hydrologia Wielkich Jezior Mazurskich. Wiad Służby Hydr Met IV:21–56Google Scholar
  3. 3.
    Mikulski Z (1966) Bilans Wodny Wielkich Jezior Mazurskich. PIHM 19Google Scholar
  4. 4.
    Podział hydrograficzny Polski (Hydrographic Division of Poland) 1980. IMGW, WarszawaGoogle Scholar
  5. 5.
    Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  6. 6.
    Chróst RJ, Siuda W (2006) Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the eutrophication gradient. Limnol Oceanogr 51:749–762CrossRefGoogle Scholar
  7. 7.
    Siuda W, Kauppinen ES, Kaliński T, Chróst RJ, Kiersztyn B (2017) The relationship between primary production and respiration in the photic zone of the Great Masurian Lakes (GMLS), in relation to trophic conditions, plankton composition and other ecological factors. Pol J Ecol 65:303–323CrossRefGoogle Scholar
  8. 8.
    Siuda W, Kiersztyn B (2015) Urea in lake ecosystem: the origin, concentration and distribution in relation to trophic state of The Great Masurian Lakes (Poland). Pol J Ecol 63:110–123CrossRefGoogle Scholar
  9. 9.
    Schindler DW (1975) Whole-lake fertilization experiments with phosphorus, nitrogen, and carbon. Int Ver Theor Angew Limnol Verh 19:3221–3231Google Scholar
  10. 10.
    Odum EP (1971) Fundamental of ecology3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  11. 11.
    Cohn L (1903) Untersuchungen über das plankton des Löwentin und einigen anderer Seen Masurens. Zeitschrift für Fischerei und deren Hilfwissenschaften 10:201–331Google Scholar
  12. 12.
    Gieysztor M, Odachowska Z (1958) Observations of the themal and chemical properties of Masurian Lakes in the Giżycko Region. Pol Arch Hydrobiol 4:123–152Google Scholar
  13. 13.
    Ławacz W, Planter M, Stasiak K, Tatur A, Wieckowski K (1978) The past, present and future of three Masurian lakes. Pol Arch Hydrobiol 25:233–238Google Scholar
  14. 14.
    Hillbricht-Ilkowska A (2005) Ochrona jezior i krajobrazu pojeziernego - problemy, procesy, Perspektywy. Kosmos 54:285–302Google Scholar
  15. 15.
    Vollenweider RA (1968) The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech Rep DAS/DSI/68.27, OECD, Paris, p 159Google Scholar
  16. 16.
    Bartsch AF (1972) Role of phosphorus in Eutrophication. EPA-R3-72-001, National Environmental Research Center Office of Research and Monitoring, US EPA, Corvallis, p 7Google Scholar
  17. 17.
    Reynolds CS (2003) The development of perceptions of aquatic eutrophication and its control. Ecohydrol Hydrobiol 3:149–163Google Scholar
  18. 18.
    Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51(part 2):356–363CrossRefGoogle Scholar
  19. 19.
    Soszka H, Cydzik D, Kudelska D (1979) The assessment of water quality in Great Masurian Lakes. Inst Kształtowania Środowiska, WarszawaGoogle Scholar
  20. 20.
    Cydzik D, Kudelska D, Soszka H (1995) Atlas stanu jezior Polski badanych w latach 1989–1993. Państwowa Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, WarszawaGoogle Scholar
  21. 21.
    Kufel I, Kufel L (1993) Monitoring of the Great Masurian Lakes in 1991. Hydrobiological Station Mikołajki Progress Report 1990–1991. Oficyna wydawnicza Instytut Ekologii PAN, Dziekanów Leśny, pp 12–15Google Scholar
  22. 22.
    Kufel I, Kufel L (1999) Spatial and temporal variability of chlorophyll and nutrients in The Great Masurian Lakes. Hydrobiological Station Mikołajki Progress Report 1996–1997. Oficyna wydawnicza Instytut Ekologii PAN, Dziekanów Leśny, pp 10–13Google Scholar
  23. 23.
    Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62:l–28Google Scholar
  24. 24.
    Downing J, McCauley E (1992) The nitrogen: phosphorus relationship in lakes. Limnol Oceanogr 37:936–945CrossRefGoogle Scholar
  25. 25.
    Jeppesen E, Søndegard M, Jensen JP, Havens K, Anneville O, Carvalho L, Coveney MF, Dencke R, Dokulil M, Foy B, Gerdeaux D, Hampton SE, Kangur K, Köhler J, Körner S, Lammens E, Lauridsen TL, Manca M, Miracle R, Moss B, Nöges P, Perrson G, Philips G, Portielie R, Romo S, Schelske CL, Straile D, Tatrai I, Willen E, Winder M (2005) Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771CrossRefGoogle Scholar
  26. 26.
    Pick FR, DRS L (1987) The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zeal J Mar Fresh Res 21:425–434CrossRefGoogle Scholar
  27. 27.
    Schinldler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefGoogle Scholar
  28. 28.
    Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671CrossRefGoogle Scholar
  29. 29.
    Nöges P, Kangur K, Nöges T, Reinart A, Simola H, Viljanen M (2008) Highlights of large lake research and management in Europe. Hydrobiologia 599:259–276CrossRefGoogle Scholar
  30. 30.
    Kauppinen ES (2014) Trophic state of the Great Masurian Lakes system in the past, present and future – causes, mechanisms and effects of changes. Ph.D. dissertation, University of WarsawGoogle Scholar
  31. 31.
    Urabe J, Yoshida T, Gurung TB, Sekino T, Tsugeki N, Nozaki K, Maruo M, Nakayama E, Nakanishi M (2005) The production-to-respiration ratio and its implication in Lake Biwa. Ecol Res 20:367–375CrossRefGoogle Scholar
  32. 32.
    Chróst RJ, Siuda W, Hałemejko GZ (1984) Long-term studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Arch Hydrobiol Suppl 70:1–32Google Scholar
  33. 33.
    Chróst RJ, Siuda W (2013) Stan jakości wód oraz zagrożeń eutrofizacyjnych dla jezior w południowej części kompleksu Wielkich Jezior Mazurskich odprowadzajacych wodę do jeziora Śniardwy. Orzysz 2013. http://www.zemuw.pl/pl/files/docs/JM_Jakosc_wod_WJM_2013.pdf
  34. 34.
    Lopata K (2008) Wpływ Miejskiej Oczyszczalni Ścieków w Mikołajkach na wybrane parametry fizyko-chemiczne wód jeziora Tałty i Jeziora Mikołajskiego. M.Sc. thesis, University of WarsawGoogle Scholar
  35. 35.
    Pieczyński E, Rybak JI (1990) Wielkie Jeziora Mazurskie. Bibliografia i indeksy. Wydawnictwo SGGW-AR, WarszawaGoogle Scholar
  36. 36.
    Lewandowski K, Jakubik B (2018) Littoral and sublittoral malacofauna of the eutrophic Lake Mikołajskie (north-eastern Poland). Folia Malacol 26:71–82CrossRefGoogle Scholar
  37. 37.
    Ozimek T (2006) The possibility of submerged macrophyte recovery from a propagule bank in the eutrophic Lake Mikołajskie (North Poland). Hydrobiologia 570:127–131CrossRefGoogle Scholar
  38. 38.
    Sieńska J, Dunalska J, Łopata M, Parszuto K, Tandyrak R (2016) Trophic state and recreational value of Lake Mikołajskie. Limnol Rev 16:147–153CrossRefGoogle Scholar
  39. 39.
    Yang X, Wu X, Hao H, He Z (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9:197–209CrossRefGoogle Scholar
  40. 40.
    De Toni A, Touron-Bodilis A, Wallet W (2009) Impact of climate change n pathogenic aquatic microorganisms: some examples. Environ Risque Sante 8:311–321Google Scholar
  41. 41.
    Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. PNAS 108:17905–17909CrossRefGoogle Scholar
  42. 42.
    Percival S, Chalmers R, Embrey M, Hunter P, Sellwood J, Wyn-Jones P (2004) Microbiology of waterborne diseases: microbiological aspects and risks. Elsevier, San DiegoGoogle Scholar
  43. 43.
    Lizana X, López A, Benito S, Augistí G, Ríos M, Piqué N, Marqués AM, Codony F (2017) Viability qPCR, a new tool for Legionella risk management. Int J Hyg Environ Health 220:1318–1324CrossRefGoogle Scholar
  44. 44.
    Barna Z, Kàdàr M, Kàlmàn E, Scheirich Szax A, Vargha M (2015) Prevalence of Legionella in premise plumbing in Hungary. Water Res 90:71–78CrossRefGoogle Scholar
  45. 45.
    Devos L, Boon N, Verstraete W (2005) Legionella pneumophila in the environment: the occurrence of a fastidious bacterium in oligotrophic conditions. Rev Environ Sci Biotechnol 4:61–74CrossRefGoogle Scholar
  46. 46.
    Janda JM, Abbot SL (2010) The genus Aeromonas: taxonomy, pathogenicity and infection. Clin Microbiol Rev 23:35–73CrossRefGoogle Scholar
  47. 47.
    Martino ME, Fasolato L, Montemurro F, Novelli E, Cardazzo B (2014) Aeromonas spp.: ubiquitous or specialized bugs? Environ Microbiol 16:1005–1018CrossRefGoogle Scholar
  48. 48.
    Petrucio MM, Medeiros AO, Rosa CA, Barbosa FAR (2005) Trophic state and microorganisms community of major sub-basins of the middle Rio Doce basin, Southeast Brazil. Braz Arch Biol Technol 48:625–633CrossRefGoogle Scholar
  49. 49.
    Doan PTK, Némery J, Schmid M, Gratiot N (2015) Eutrophication of turbid tropical reservoirs: scenarios of evolution of the reservoir of Coitzo, Mexico. Ecol Inform 29:192–205CrossRefGoogle Scholar
  50. 50.
    Kümmerer K (2009) Antibiotics in the aquatic environment - a review - part II. Chemosphere 75(4):417–434.  https://doi.org/10.1016/j.chemosphere.2008.12.006 CrossRefGoogle Scholar
  51. 51.
    Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A 115(15):E3463–E3470.  https://doi.org/10.1073/pnas.1717295115 CrossRefGoogle Scholar
  52. 52.
    Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Nat Acad Sci 112:5649–5654.  https://doi.org/10.1073/pnas.1503141112 CrossRefGoogle Scholar
  53. 53.
    Peláez F (2006) The historical delivery of antibiotics from microbial natural products - can history repeat? Biochem Pharmacol 71(7):981–990.  https://doi.org/10.1016/j.bcp.2005.10.010 CrossRefGoogle Scholar
  54. 54.
    Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8(5):557–563.  https://doi.org/10.1016/j.coph.2008.04.008 CrossRefGoogle Scholar
  55. 55.
    Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf 91:96–102.  https://doi.org/10.1016/j.ecoenv.2013.01.014 CrossRefGoogle Scholar
  56. 56.
    Ziembińska-Buczyńska A, Felis E, Folkert J, Meresta A, Stawicka D, Gnida A, Surmacz-Górska J (2015) Detection of antibiotic resistance genes in wastewater treatment plant - molecular and classical approach. Arch Environ Prot 41:23–32.  https://doi.org/10.1515/aep-2015-0035 CrossRefGoogle Scholar
  57. 57.
    Harnisz M, Korzeniewska E, Gołaś I (2015) The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere 128:134–141.  https://doi.org/10.1016/j.chemosphere.2015.01.035 CrossRefGoogle Scholar
  58. 58.
    Giebułtowicz J, Tyski S, Wolinowska R, Grzybowska W, Zaręba T, Drobniewska A, Nałęcz-Jawecki G (2018) Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environ Sci Pollut Res Int 25:5788–5807.  https://doi.org/10.1007/s11356-017-0861-x CrossRefGoogle Scholar
  59. 59.
    Mudryk ZJ, Kosiorek A, Perliński P (2013) In vitro antibiotic resistance of Vibrio-like organisms isolated from seawater and sand of marine recreation beach in the southern Baltic Sea. Hydrobiologia 70(1):141–150.  https://doi.org/10.1007/s10750-012-1317-4 CrossRefGoogle Scholar
  60. 60.
    Chojniak J, Jałowiecki Ł, Dorgeloh E, Hegedusova B, Ejhed H, Magnér J, Płaza G (2015) Application of the BIOLOG system for characterization of Serratia marcescens ss marcescens isolated from onsite wastewater technology (OSWT). Acta Biochim Pol 62:799–805.  https://doi.org/10.18388/abp.2015_1138 CrossRefGoogle Scholar
  61. 61.
    Kiersztyn B, Siuda W, Chróst RJ (2012) Persistence of bacterial proteolytic enzymes in lake ecosystems. FEMS Microbiol Ecol 80:124–134.  https://doi.org/10.1111/j.1574-6941.2011.01276.x CrossRefGoogle Scholar
  62. 62.
    Shaikh S, Fatima J, Shakil S, SMD R, Kamal MA (2015) Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci 22(1):90–101.  https://doi.org/10.1016/j.sjbs.2014.08.002 CrossRefGoogle Scholar
  63. 63.
    Kiersztyn B, Siuda W, Chróst RJ (2017) Coomassie blue G250 for visualization of active bacteria from lake environment and culture. Pol J Microbiol 66:365–373.  https://doi.org/10.5604/01.3001.0010.4867 CrossRefGoogle Scholar
  64. 64.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25.  https://doi.org/10.1038/nrmicro2259 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Waldemar Siuda
    • 1
  • Karolina Grabowska
    • 1
  • Tomasz Kaliński
    • 1
  • Bartosz Kiersztyn
    • 1
  • Ryszard J. Chróst
    • 1
    Email author
  1. 1.Department of Microbial Ecology and Environmental Biotechnology, Faculty of BiologyUniversity of WarsawWarszawaPoland

Personalised recommendations