Advertisement

Batch Processing of Shortest Path Queries in Road Networks

  • Mengxuan ZhangEmail author
  • Lei Li
  • Wen Hua
  • Xiaofang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11393)

Abstract

Shortest path algorithm is a foundation to various location-based services (LBS) and has been extensively studied in the literature. However, server-side shortest path calculation faces a severe scalability issue when the business expands and a huge amount of requests are submitted to the server simultaneously. Although a straightforward solution widely-adopted in current industry is to deploy more processing resources, in this work, we aim to improve the efficiency algorithmically by answering queries in a batch and reusing shareable computations. In particular, we generalize the goal-directed A* algorithm to correctly solve the batch processing problem with localized destinations. We further propose two decomposition algorithms to deal with scenarios where the destinations are sparse. Extensive evaluations on a real-world road network verify the superiority of our algorithm compared with state-of-the-art methods.

Keywords

Shortest path Batch process Road network 

Notes

Acknowledgment

This research is partially supported by the Australian Research Council (Grants No. DP150103008 and DP170101172).

References

  1. 1.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165. Society for Industrial and Applied Mathematics (2005)Google Scholar
  2. 2.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68552-4_24CrossRefGoogle Scholar
  3. 3.
    Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speedup Dijkstra’s algorithm. J. Exp. Algorithm. (JEA) 11, 2–8 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 349–360. ACM (2013)Google Scholar
  6. 6.
    Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets 2-hop-labeling: efficient shortest distance queries on road networks. In: Proceedings of the 2018 International Conference on Management of Data, pp. 709–724. ACM (2018)Google Scholar
  7. 7.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 43–54. ACM (2008)Google Scholar
  8. 8.
    Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate constrained shortest path queries on large road networks. Proc. VLDB Endow. 10(2), 61–72 (2016)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public transportation networks: a labelling approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 967–982. ACM (2015)Google Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  13. 13.
    Li, L., Hua, W., Du, X., Zhou, X.: Minimal on-road time route scheduling on time-dependent graphs. Proc. VLDB Endow. 10(11), 1274–1285 (2017)CrossRefGoogle Scholar
  14. 14.
    Li, L., Zheng, K., Wang, S., Hua, W., Zhou, X.: Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory. VLDB J. Int. J. Very Large Data Bases 27(3), 321–345 (2018)CrossRefGoogle Scholar
  15. 15.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a: efficient point-to-point shortest path algorithms. In: Proceedings of the Meeting on Algorithm Engineering & Expermiments, pp. 129–143. Society for Industrial and Applied Mathematics (2006)Google Scholar
  16. 16.
    Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient shortest-path computation. J. Exp. Algorithm. (JEA) 10, 1–3 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fu, A.W.-C., Wu, H., Cheng, J., Wong, R.C.-W.: IS-LABEL: an independent-set based labeling scheme for point-to-point distance querying. Proc. VLDB Endow. 6(6), 457–468 (2013)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Yiu, M.L., Kou, N.M., et al.: An experimental study on hub labeling based shortest path algorithms. Proc. VLDB Endow. 11(4), 445–457 (2017)Google Scholar
  19. 19.
    Jiang, M., Fu, A.W.-C., Wong, R.C.-W., Xu, Y.: Hop doubling label indexing for point-to-point distance querying on scale-free networks. Proc. VLDB Endow. 7(12), 1203–1214 (2014)CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan, J., Alborzi, H., Samet, H.: Efficient query processing on spatial networks. In: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 200–209. ACM (2005)Google Scholar
  21. 21.
    Qi, Z., Xiao, Y., Shao, B., Wang, H.: Toward a distance oracle for billion-node graphs. Proc. VLDB Endow. 7(1), 61–72 (2013)CrossRefGoogle Scholar
  22. 22.
    Reza, R.M., Ali, M.E., Hashem, T.: Group processing of simultaneous shortest path queries in road networks. In: 2015 16th IEEE International Conference on Mobile Data Management (MDM), vol. 1, pp. 128–133. IEEE (2015)Google Scholar
  23. 23.
    Mahmud, H., Amin, A.M., Ali, M.E., Hashem, T., Nutanong, S.: A group based approach for path queries in road networks. In: Nascimento, M.A., et al. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 367–385. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40235-7_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mengxuan Zhang
    • 1
    Email author
  • Lei Li
    • 1
  • Wen Hua
    • 1
  • Xiaofang Zhou
    • 1
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations