Advertisement

Algebraic Bayesian Networks: The Use of Parallel Computing While Maintaining Various Degrees of Consistency

  • Nikita A. KharitonovEmail author
  • Anatoly G. Maximov
  • Alexander L. Tulupyev
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

This paper presents approaches to parallelization of algorithms for maintaining external and internal consistency in algebraic Bayesian networks as one of the representatives of probabilistic graphical models. The algorithms modified based on these approaches are described and presented in the form of schemes.

Keywords

Algebraic Bayesian networks Probabilistic graphical models Consistency External consistency Internal consistency Parallel computing 

References

  1. 1.
    Bloom, F: Optimizing decision making. In: Opportunities in Neuroscience for Future Army Applications, pp. 36–44. The National Academies Press, Washington, DC (2009)Google Scholar
  2. 2.
    Das, M., Ghosh, S.K.: FB-STEP: a fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data. Expert Syst. Appl. 117, 211–227 (2019).  https://doi.org/10.1016/j.eswa.2018.08.057CrossRefGoogle Scholar
  3. 3.
    Falzer, P.R., Garman, D.M.: Optimizing clozapine through clinical decision making. Acta Psychiatr. Scand. 126(1), 47–58 (2012).  https://doi.org/10.1111/j.1600-0447.2012.01863.xCrossRefGoogle Scholar
  4. 4.
    Fehlings, M.G., Noonan, V.K., Atkins, D., Burns, A.S., Cheng, C.L., Singh, A., Dvorak, M.F.: Optimizing clinical decision making in acute traumatic spinal cord injury. J. Neurotrauma 34(20), 2841–2842 (2017).  https://doi.org/10.1089/neu.2016.4926CrossRefGoogle Scholar
  5. 5.
    Guzmán, E., Vázquez, M., Del Valle, D., Pérez-Rodríguez, P.: Artificial neuronal networks: a Bayesian approach using parallel computing. Rev. Colomb. Estad. 41(2), 173–189 (2018).  https://doi.org/10.15446/rce.v41n2.55250MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gan, H.X., Zhang, Y., Song, Q.: Bayesian belief network for positive unlabeled learning with uncertainty. Pattern. Recogn. Lett. 90, 28–35 (2017).  https://doi.org/10.1016/j.patrec.2017.03.007CrossRefGoogle Scholar
  7. 7.
    Hosseini, S., Sarder, M.D.: Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int. J. Electr. Power 105, 110–122 (2019).  https://doi.org/10.1016/j.ijepes.2018.08.011CrossRefGoogle Scholar
  8. 8.
    Ibrahimovic, S., Turulja, L., Bajgoric, N.: Bayesian belief networks in IT investment decision making. In: Maximizing Information System Availability Through Bayesian Belief Network Approaches: Emerging Research and Opportunities, pp. 75–107 (2017).  https://doi.org/10.4018/978-1-5225-2268-3.ch004
  9. 9.
    Kharitonov, N.A., Zolotin, A.A., Tulupyev, A.L.: Software implementation of algebraic Bayesian networks consistency algorithms. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), Saint-Petersburg, Russia, pp. 8–10 (2017)Google Scholar
  10. 10.
    Kulagin, V.: Design of control systems for parallel computing structures based on net models. In: 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, pp. 1–4 (2016).  https://doi.org/10.1109/SIBCON.2016.7491749
  11. 11.
    Kulagin, V.P.: Problems of parallel computing. Prospects Sci. Educ. 1(19) (2016). (in Russian)Google Scholar
  12. 12.
    Li, J., Song, G., Semakula, H.M., Zhang, S.: Climatic burden of eating at home against away-from-home: a novel Bayesian belief network model for the mechanism of eating-out in urban China. Sci. Total Environ. 650, 224–232 (2019).  https://doi.org/10.1016/j.scitotenv.2018.09.015CrossRefGoogle Scholar
  13. 13.
    Quintanilha, A.: Knowledge and dialogue to deal with uncertainty. Free Radical Bio. Med. 106, S4–S4 (2018).  https://doi.org/10.1016/j.frb.2018.04.0551CrossRefGoogle Scholar
  14. 14.
    Sreelekha, S.: NeuroSymbolic integration with uncertainty. Ann. Math. Artif. Intel. 106(3–4), 201–220 (2018).  https://doi.org/10.1007/s10472-018-9605-yMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Suleimanov, A., Abramov, M., Tulupyev, A.: Modelling of the social engineering attacks based on social graph of employees communications analysis. In: Proceedings—2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, pp. 801–805. IEEE (2018).  https://doi.org/10.1109/ICPHYS.2018.8390809
  16. 16.
    Tulupyev, A.L.: Algebraic Bayesian networks: a probabilistic-logic graphical model of knowledge patterns bases with uncertainty. Doctor of science dissertation. St. Petersburg State University (2009). (in Russian)Google Scholar
  17. 17.
    Vasimuddin, M., Chockalingam, S.P., Aluru, S.: A parallel algorithm for Bayesian network inference using arithmetic circuits. In: Proceedings—2018 IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS 2018, pp. 34–43. IEEE (2018).  https://doi.org/10.1109/IPDPS.2018.00014
  18. 18.
    Zhang, M.M., Lam, H., Lin, L.: Robust and parallel Bayesian model selection. Comput. Stat. Data Anal. 127, 229–247 (2018).  https://doi.org/10.1016/j.csda.2018.05.016MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)St. PetersburgRussia

Personalised recommendations