Advertisement

An Analysis of Road Traffic Flow Characteristics Using Wavelet Transform

  • Oleg GolovninEmail author
  • Anastasia Stolbova
  • Nikita Ostroglazov
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

Measures to obtain reliable information about the current state of traffic flows are necessary to introduce effective control methods offered by modern intelligent transport systems. We developed a method and software for the wavelet analysis of road traffic flow characteristics in the frequency and time domains without restoring the missing samples. The developed method was implemented in the form of software embedded in an intelligent transport system. The method of wavelet analysis of road traffic flow characteristics takes into account the non-equidistance of data, which allows the construction of a time-frequency scan with a uniform representation without restoring the missing samples with adjustment of the sampling intervals. Background data on traffic flows for analysis was obtained from the CityPulse Dataset Collection. We analyzed such characteristics as average speed and vehicle count. We analyzed wavelet spectra and scalograms, identified common dependencies in the frequency distribution of extremes, and revealed differences in spectral power for different road segments.

Keywords

Spectral analysis Data mining Traffic pattern Wavelet 

References

  1. 1.
    Lima, S.F., Barbosa, S.A.A., Palmeira, P.C., Matos, L., Secundo, I., Nascimento, R.: Systematic review: techniques and methods of urban monitoring in intelligent transport systems. In: International Conference on Wireless and Mobile Communications, ICWMC, pp. 1–5. ARIA, Nice (2017)Google Scholar
  2. 2.
    Taylor, M.A., Bonsall, P.W.: Understanding Traffic Systems: Data Analysis and Presentation, 2nd edn. Routledge, London (2017)CrossRefGoogle Scholar
  3. 3.
    Jain, N.K., Saini, R.K., Mittal, P.A.: Review on traffic monitoring system techniques. Soft Comput.: Theories Appl. 742, 569–577 (2019)Google Scholar
  4. 4.
    Askari, H., Asadi, E., Saadatnia, Z., Khajepour, A., Khamesee, M.B., Zu, J.: A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy 32, 105–116 (2017)CrossRefGoogle Scholar
  5. 5.
    Sahgal, D., Ramesh, A., Parida, M.: Real-time vehicle queue detection at urban traffic intersection using image processing. Int. J. Eng. Sci. Generic Res. 4(2), 12–15 (2018)Google Scholar
  6. 6.
    Liu, Z., Jiang, S., Zhou, P., Li, M.: A participatory urban traffic monitoring system: the power of bus riders. IEEE Trans. Intell. Transp. Syst. 18(10), 2851–2864 (2017)CrossRefGoogle Scholar
  7. 7.
    Bellavista, P., Caselli, F., Corradi, A., Foschini, L.: Cooperative vehicular traffic monitoring in realistic low penetration scenarios: the COLOMBO experience. Sensors 18(3), 822 (2018)CrossRefGoogle Scholar
  8. 8.
    Fedoseev, A., Golovnin, O., Mikheeva, T.: An approach for GIS-based transport infrastructure model synthesis on the basis of hyperspectral information. Procedia Eng. 201, 363–371 (2017)CrossRefGoogle Scholar
  9. 9.
    Wang, Y.D., Xu, D.W., Lu, Y., Shen, J.Y., Zhang, G.J.: Compression algorithm of road traffic data in time series based on temporal correlation. IET Intell. Transp. Syst. 12(3), 177–185 (2017)CrossRefGoogle Scholar
  10. 10.
    Crawford, F., Watling, D.P., Connors, R.D.: A statistical method for estimating predictable differences between daily traffic flow profiles. Transp. Res. Part B: Methodol. 95, 196–213 (2017)CrossRefGoogle Scholar
  11. 11.
    Tchrakian, T.T., Basu, B., O’Mahony, M.: Real-time traffic flow forecasting using spectral analysis. IEEE Trans. Intell. Transp. Syst. 13(2), 519–526 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Zhang, Y., Haghani, A.: A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C: Emerg. Technol. 43, 65–78 (2014)CrossRefGoogle Scholar
  13. 13.
    Jiang, Y., Kang, R., Li, D., Guo, S., Havlin, S.: Spatio-temporal propagation of traffic jams in urban traffic networks. arXiv preprint arXiv:1705.08269 (2017)
  14. 14.
    Moretti, F., Pizzuti, S., Panzieri, S., Annunziato, M.: Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167, 3–7 (2015)CrossRefGoogle Scholar
  15. 15.
    Zeroual, A., Harrou, F., Sun, Y., Messai, N.: Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme. Sustain. Cities Soc. 35, 494–510 (2017)CrossRefGoogle Scholar
  16. 16.
    Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Orlando (2009)zbMATHGoogle Scholar
  17. 17.
    Aminghafari, M., Poggi, J.M.: Nonstationary time series forecasting using wavelets and kernel smoothing. Commun. Stat.-Theory Methods 41(3), 485–499 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cheng, Y., Zhang, Y., Hu, J., Li, L.: Mining for similarities in urban traffic flow using wavelets. In: International Conference on Intelligent Transportation Systems Conference, ITSC, pp. 119–124. IEEE, Seattle (2007)Google Scholar
  19. 19.
    Zhang, H., Wang, X., Cao, J., Tang, M., Guo, Y.: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series. Appl. Intell. 8, 3827–3838 (2018)CrossRefGoogle Scholar
  20. 20.
    Mohan, D.M., Asif, M.T., Mitrovic, N., Dauwels, J., Jaillet, P.: Wavelets on graphs with application to transportation networks. In: International Conference on Intelligent Transportation Systems, ITSC, pp. 1707–1712. IEEE, Qingdao (2014)Google Scholar
  21. 21.
    Antonios, K., Alexandridis, A., Zapranis, D.: Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013)CrossRefGoogle Scholar
  22. 22.
    Linhares, L.S.L., Araújo Jr., J.M., Araújo, F.M.U., Yoneyama, T.: A nonlinear system identification approach based on fuzzy wavelet neural network. J. Intell. Fuzzy Syst. 28(1), 225–235 (2015)Google Scholar
  23. 23.
    Chen, J.F., Lo, S.K., Do, Q.H.: Forecasting short-term traffic flow by fuzzy wavelet neural network with parameters optimized by biogeography-based optimization algorithm. Comput. Intell. Neurosci. 2018, 1–13 (2018)Google Scholar
  24. 24.
    Boto-Giralda, D., Díaz-Pernas, F.J., González-Ortega, D., Díez-Higuera, J.F., Antón-Rodríguez, M., Martínez-Zarzuela, M., Torre-Díez, I.: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks. Comput.-Aided Civil Infrastruct. Eng. 25(7), 530–545 (2010)CrossRefGoogle Scholar
  25. 25.
    Khaymovich, A.I., Prokhorov, S.A., Stolbova, A.A., Kondratyev, A.I.: A model of milling process based on Morlet wavelets decomposition of vibroacoustic signals. In: International Conference Information Technology and Nanotechnology, vol. 1904, pp. 135–140. ITNT, Samara (2017)Google Scholar
  26. 26.
    Golovnin, O., Fedoseev, A., Mikheeva, T.: Intelligent geographic information platform for transport process analysis. In: CEUR Workshop Proceedings, vol. 1901, pp. 78–85. RWTH Aachen (2017)Google Scholar
  27. 27.
    ITSGIS Homepage. http://www.itsgis.ru. Accessed 30 Oct 2018
  28. 28.
    Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea, S., Kjærgaard, B., Kuemper, D., Nechifor, S., Puiu, D., Sheth, A., Tsiatsis, V., Vestergaard, L.: Real time IoT stream processing and large-scale data analytics for smart city applications. In: European Conference on Networks and Communications, Poster Session (2014)Google Scholar
  29. 29.
    CityPulse Dataset Collection. http://iot.ee.surrey.ac.uk:8080/datasets.html. Accessed 30 Oct 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Samara UniversitySamaraRussia

Personalised recommendations