Advertisement

Models and Methods for Determining Damage from Atmospheric Emissions of Industrial Enterprises

  • Elena KushnikovaEmail author
  • Ekaterina Kulakova
  • Sergei Alipchenko
  • Alexander Rezchikov
  • Vadim Kushnikov
  • Vladimir Ivaschenko
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

Mathematical models and algorithms have been developed that allow analytically determining the total amount of damage using the metric functions of the state space, piecewise-defined functions and S-shaped curves.It has been established that the amount of damage from atmospheric pollutants can be approximated by the developed nonlinear evaluation functions obtained using the minimax criterion and the Savage criterion, which makes it possible to minimize the objective damage function under conditions of uncertainty of disturbing influences in such a way that the damage does not exceed a given value. The developed software will be used in the modernization of automated systems of services of the chief ecologist of industrial enterprises.

Keywords

Mathematical model Industrial enterprises Pollutants 

References

  1. 1.
    Filimonyuk, L.: The problem of critical events’ combinations in air transportation systems. In: Advances in Intelligent Systems and Computing, vol. 573, pp. 384–392. Springer (2017)Google Scholar
  2. 2.
    Spiridonov, A., Rezchikov, A., Kushnikov, V., Ivashchenko, V., Bogomolov, A., Filimonyuk, L., Dolinina, O., Kushnikova, E., Shulga, T., Tverdokhlebov, V., Kushnikov, O., Fominykh, D.: Prediction of main factors’ values of air transportation system safety based on system dynamics. J. Phys: Conf. Ser. 1015, 032140 (2018). IOP PublishingGoogle Scholar
  3. 3.
    Angel, S., Parent, J., Civco, D.L., Blei, A., Potere, D.: The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Prog. Plan. 75, 53–107 (2011).  https://doi.org/10.1016/j.progress.2011.04.001CrossRefGoogle Scholar
  4. 4.
    Aronson, M.F.J., La Sorte, F.A., Nilon, C.H., Katti, M., Goddard, M.A., Lepczyk, C.A., Winter, M., et al.: A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B: Biol. Sci. 281, 20133330 (2014).  https://doi.org/10.1098/rspb.2013.3330CrossRefGoogle Scholar
  5. 5.
    Aronson, M.F.J., Lepczyk, C.A., Evans, K.L., Goddard, M.A., Lerman, S.B., MacIvor, J.S., Vargo, T., et al.: Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).  https://doi.org/10.1002/fee.1480CrossRefGoogle Scholar
  6. 6.
    Bates, D., Maechler, M., Bolker, B., Walker, S.: lme4: linear mixed-effects models using Eigen and S4 (2015). https://cran.r-project.org/web/packages/lme4/index.html
  7. 7.
    Casalegno, S., Anderson, K., Hancock, S., Gaston, K.J.: Improving models of urban greenspace: from vegetation surface cover to volumetric survey, using waveform laser scanning. Methods Ecol. Evol. 8, 1443–1452 (2017).  https://doi.org/10.1111/2041210X.12794CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Saratov State Technical UniversitySaratovRussia
  2. 2.Institute of Precision Mechanics and Control, RASSaratovRussia

Personalised recommendations