Advertisement

Data Protection During Remote Monitoring of Person’s State

  • Tatyana BuldakovaEmail author
  • Darina Krivosheeva
Conference paper
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 199)

Abstract

Problem of human personal data protection in telemedicine systems is considered. The model of possible threats is developed for a mobile measuring system that provides continuous monitoring of a person’s state by recorded biosignals. The problem of ensuring the confidentiality and integrity of personal data transferred from the sensor to the cloud is identified. Possible ways of protection of the transmitted information in systems for remote monitoring of person’s state are systematized. An original method of personal data protection is presented. It is shown that the necessary information for construction of cryptographic keys can be obtained by appropriate processing of biosignals. It is proposed to use biosignals registered by sensors to construct symmetric cryptographic keys, which reflect the physiological characteristics of the patient and can be used to conceal information. The processing of biosignals is based on the reconstruction of a mathematical model that generates time series, which are diagnostically equivalent to the original biosignals. Examples of reconstruction by biosignals for obtaining physiological signature of the person are given.

Keywords

Telemedicine Mobile measuring system Data protection Biosignals Reconstruction of system 

References

  1. 1.
    Idhate, S., Bilapatre, A., Rathod, A., Kalbande, H.: Dam Monitoring system using wireless sensor networks. Int. Res. J. Eng. Technol. 4(4), 1767–1769 (2017)Google Scholar
  2. 2.
    Xu, M., Sun, M., Wang, G., Huang, S.: Intelligent remote wireless streetlight monitoring system based on GPRS. In: Xiao, T., Zhang, L., Fei, M. (eds.) Communications in Computer and Information Science, vol. 324, pp. 228–237. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ibrahim, A., Muhammad, R., Alshitawi, M., Alharbi, A., Almarshoud, A.: Intelligent green house application based remote monitoring for precision agricultural strategies: a survey. J. Appl. Sci. 15(7), 947–952 (2015)CrossRefGoogle Scholar
  4. 4.
    Suyatinov, S.I.: The use of active learning in biotechnical engineering education. In: Smirnova, E.V., Clark, R.P. (eds.) Handbook of Research on Engineering Education in a Global Context, pp. 233–242. IGI Global, Hershey (2019).  https://doi.org/10.4018/978-1-5225-3395-5.ch021
  5. 5.
    Buldakov N.S., Buldakova T.I., Suyatinov S.I.: Etalon-photometric method for estimation of tissues density at X-ray images. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 9917, paper 99171Y (2016).  https://doi.org/10.1117/12.2229539
  6. 6.
    Buldakova, T.I., Dzhalolov, A.: Analysis of data processes and choices of data-processing and security technologies in situation centers. Sci. Tech. Inf. Process. 39(2), 127–132 (2012).  https://doi.org/10.3103/S0147688212020116CrossRefGoogle Scholar
  7. 7.
    Buldakova, T.I., Mikov, D.A.: Comprehensive approach to information security risk management. In: CEUR Workshop Proceedings, vol. 2081, paper 05, pp. 21–26 (2017)Google Scholar
  8. 8.
    Appari, A., Johnson, M.E.: Information security and privacy in healthcare: current state of research. Int. J. Internet Enterp. Manag. 6(4), 279–314 (2010)CrossRefGoogle Scholar
  9. 9.
    Lantsberg, A.V., Treusch, K., Buldakova, T.I.: Development of the electronic service system of a municipal clinic (based on the analysis of foreign web resources). Autom. Doc. Math. Linguist. 45(2), 74–80 (2011)CrossRefGoogle Scholar
  10. 10.
    Bashi, N., Karunanithi, M., Fatehi, F., Ding, H., Walters, D.: Remote monitoring of patients with heart failure: an overview of systematic reviews. J. Med. Internet Res. 19(1), e18 (2017)CrossRefGoogle Scholar
  11. 11.
    Nakamura, N., Koga, T., Iseki, H.: A meta-analysis of remote patient monitoring for chronic heart failure patients. J. Telemed. Telecare 20(1), 11–17 (2014).  https://doi.org/10.1177/1357633X13517352CrossRefGoogle Scholar
  12. 12.
    Schmidt, S., Schuchert, A., Krieg, T., Oeff, M.: Home telemonitoring in patients with chronic heart failure. Deutsches Ärzteblatt International 107(8), 131–138 (2010).  https://doi.org/10.3238/arztebl.2010.0131CrossRefGoogle Scholar
  13. 13.
    Prado, M., Roa, L., Reina-Tosina, J.: Virtual center for renal support: technological approach to patient physiological image. IEEE Trans. Biomed. Eng. 49(12), 1420–1430 (2002)CrossRefGoogle Scholar
  14. 14.
    Lia, B.N., Fua, B.B., Dong, M.C.: Development of a mobile pulsewaveform analyzer for cardiovascular health. Comput. Biol. Med. 38(2), 438–445 (2008)CrossRefGoogle Scholar
  15. 15.
    Mundt, C.W., Montgomery, K.N., Udoh, U.E., Barker, V.N.: A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans. Inf Technol. Biomed. 9(3), 382–391 (2005)CrossRefGoogle Scholar
  16. 16.
    Paradiso, R., Loriga, G., Taccini, N.: A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf Technol. Biomed. 9(3), 337–344 (2005)CrossRefGoogle Scholar
  17. 17.
    Winters, J., Wang, Y.: Wearable sensors and telerehabilitation. IEEE Eng. Med. Biol. Mag. 3, 56–65 (2003)CrossRefGoogle Scholar
  18. 18.
    Venkatasubramanian, K.K., Banerjee, A., Gupta, S.K.S.: PSKA: usable and secure key agreement scheme for body area networks. IEEE Trans. Inf Technol. Biomed. 14(1), 60–68 (2010)CrossRefGoogle Scholar
  19. 19.
    Malhotra, K., Gardner, S., Patz, R.: Implementation of elliptic-curve cryptography on mobile healthcare devices. In: IEEE International Conference on Networking, Sensing and Control, pp. 239–244 (2007)Google Scholar
  20. 20.
    Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Information Processing in Sensor Networks, pp. 245–256 (2008)Google Scholar
  21. 21.
    Buldakova, T.I., Suyatinov, S.I.: Reconstruction method for data protection in telemedicine systems. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 9448, paper 94481U (2014).  https://doi.org/10.1117/12.2180644
  22. 22.
    Cherukuri, S., Venkatasubramanian, K., Gupta, S.K.S.: BioSec: a biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In: Proceedings of Workshop on Wireless Security and Privacy, pp. 432–439 (2003)Google Scholar
  23. 23.
    Poon, C.C.Y., Zhang, Y.-T., Bao, S.-D.: A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun. Mag. 44(4), 73–81 (2006)CrossRefGoogle Scholar
  24. 24.
    Nabar, S., Banerjee, A., Gupta, S.K.S., Poovendran, R.: GeM-REM: generative model-driven resource efficient ECG monitoring in body sensor networks. In: International Conference on Body Sensor Networks (BSN), pp. 1–6 (2011)Google Scholar
  25. 25.
    Banerjee, A., Gupta, S.K.S., Venkatasubramanian, K.K.: PEES: Physiology-based End-to-End Security for mHealth. In: Proceedings of the 4th Conference on Wireless Health (2013). article 2Google Scholar
  26. 26.
    McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289–294 (2003)CrossRefGoogle Scholar
  27. 27.
    Nabar, S., Banerjee, A., Gupta, S.K.S., Poovendran, R.: Resource-efficient and reliable long term wireless monitoring of the photoplethysmographic signal. In: Proceedings of the 2nd Conference on Wireless Health, pp. 1–9 (2011). article no. 9Google Scholar
  28. 28.
    Bezruchko, B.P., Smirnov, D.A.: Extracting knowledge from time series: an introduction to nonlinear empirical modeling. Springer Series in Synergetics. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Xu, P.C.: Differential phase space reconstructed for chaotic time series. Appl. Math. Model. 33(2), 999–1013 (2009).  https://doi.org/10.1016/j.apm.2007.12.021MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Basarab, M.A., Konnova, N.S., Basarab, D.A., Matsievskiy, D.D.: Digital signal processing of the Doppler blood flow meter using the methods of nonlinear dynamics. In: Progress in Electromagnetics Research Symposium, pp. 1715–1720 (2017).  https://doi.org/10.1109/piers.2017.8262026

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations