Advertisement

Power Filters Planning

  • Mohammad Kiani-Moghaddam
  • Mojtaba Shivaie
  • Philip D. Weinsier
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

In this chapter, the authors provide a succinct overview of harmonic power filter planning studies, including causes and malicious effects of nonlinear loads and detailed descriptions of passive and active harmonic power filters. Next, different methodologies for solving harmonic power flow problems are precisely classified. Besides these outlines, the chapter develops the formulation of an innovative techno-economic multi-objective framework for the hybrid harmonic power filter (HHPF) planning problem in distribution networks, with consideration of uncertainty in demand and harmonic currents injected by nonlinear loads. The proposed framework is also broken down into a harmonic power flow problem and the HHPF planning problem. The harmonic power flow problem acts as a central core of the HHPF planning problem and is solved via a probabilistic decoupled harmonic power flow (PDHPF) methodology. This chapter widely utilizes an efficient two-point estimate method (two-PEM) in order to handle uncertainty in demand and harmonic currents injected by nonlinear loads in the proposed framework. The proposed PDHPF methodology, according to the efficient two-PEM, is implemented by a deterministic decoupled harmonic power flow (DDHPF) methodology. A loadability-based Newton-Raphson power flow (LBNRPF) methodology is also applied to solve the power flow problem at the principal frequency.

Keywords

Deterministic decoupled harmonic power flow (DDHPF) Hybrid harmonic power filter (HHPF) Loadability-based Newton-Raphson power flow (LBNRPF) Nonlinear loads Probabilistic decoupled harmonic power flow (PDHPF) Two-point estimate method (two-PEM) 

References

  1. 1.
    P. Caramia, G. Carpinelli, P. Verde, Power Quality Indices in Liberalized Markets (Wiley, Oxford, 2009)CrossRefGoogle Scholar
  2. 2.
    IEEE 1159 (1995) recommended practice for monitoring electric power quality, NovemberGoogle Scholar
  3. 3.
    T.D.C. Busarello, J.A. Pomilio, M.G. Simões, Passive filter aided by shunt compensators based on the conservative power theory. IEEE Trans. Ind. Appl. 52(4), 3340–3347 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Morán, D. Dixon, M. Torres, Active power filters, in Power Electronics Handbook, 4th edn., (2018), pp. 1341–1379CrossRefGoogle Scholar
  5. 5.
    S. Ostroznik, P. Bajec, P. Zajec, A study of a hybrid filter. IEEE Trans. Ind. Electron. 57(3), 935–942 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Baghzouz et al., Time-varying harmonics: Part I–Characterizing measured data. IEEE Trans. Power Deliv. 13(3), 938–944 (1998)CrossRefGoogle Scholar
  7. 7.
    Y. Baghzouz et al., Time-varying harmonics: Part II–Harmonic summation and propagation. IEEE Trans. Power Deliv. 17(1), 279–285 (2002)CrossRefGoogle Scholar
  8. 8.
    E.F. Fuchs, M.A.S. Masoum, Power Quality in Power Systems and Electrical Machines (Elsevier Academic Press, Burlington, 2008)Google Scholar
  9. 9.
    J. Arrillaga, B.C. Smith, Power System Harmonic Analysis (John Wiley and Sons, New York, 1997)CrossRefGoogle Scholar
  10. 10.
    J.C. Das, Passive filters—potentialities and limitations. IEEE Trans. Ind. Appl. 40(1), 232–241 (2004)CrossRefGoogle Scholar
  11. 11.
    L.B.G. Campanhol, S.A.O. da Silva, A. Goedtel, Application of shunt active power filter for harmonic reduction and reactive power compensation in three-phase four-wire systems. IET Power Electron. 7(11), 2825–2836 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Xia, G.T. Heydt, Harmonic power flow studies Part I—Formulation and solution. IEEE Trans. Power App. Syst. 101(6), 1257–1265 (1982)CrossRefGoogle Scholar
  13. 13.
    D. Xia, G.T. Heydt, Harmonic power flow studies—Part II implementation and practical application. IEEE Trans. Power App. Syst. 101(6), 1266–1270 (1982)CrossRefGoogle Scholar
  14. 14.
    H.C. Chin, Optimal shunt capacitor allocation by fuzzy dynamic programming. Electr. Power Syst. Res. 35(2), 133–139 (1995)CrossRefGoogle Scholar
  15. 15.
    J.H. Teng, C.Y. Chang, A fast harmonic load flow method for industrial distribution systems, in International Conference on Power System Technology, vol. 3 (2000), pp. 1149–1154Google Scholar
  16. 16.
    I.M. Elamin, Fast decoupled harmonic load flow method, in Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting (1990), pp. 1749–1756Google Scholar
  17. 17.
    Y.Y. Hong, J.S. Lin, C.H. Liu, Fuzzy harmonic power flow analyses, in International Conference on Power System Technology, vol. 1 (2000), pp. 121–125Google Scholar
  18. 18.
    T. Esposito, G. Carpinelli, P. Varilone, P. Verde, Probabilistic harmonic power flow for percentile evaluation, in Canadian Conference on Electrical and Computer Engineering, vol. 2 (2001), pp. 831–838Google Scholar
  19. 19.
    C.N. Bathurst, B.C. Smith, N.R. Watson, J. Arrillaga, A modular approach to the solution of the three-phase harmonic power-flow. IEEE Tran. Power Deliv. 15(3), 984–989 (2000)CrossRefGoogle Scholar
  20. 20.
    J.H. Teng, C.Y. Teng, Backward/forward sweep-based harmonic analysis method for distribution systems. IEEE Trans. Power Deliv. 22(3), 1665–1672 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Kiani-Moghaddam, M. Shivaie, A. Salemnia, M.T. Ameli, Probabilistic multi-objective framework for multiple active power filters planning. Electr. Power Compon. Syst 45(18), 2062–2077 (2017)CrossRefGoogle Scholar
  22. 22.
    I. Ziari, A. Jalilian, A new approach for allocation and sizing of multiple active power line conditioners. IEEE Trans. Power Deliv. 25(2), 1026–1035 (2010)CrossRefGoogle Scholar
  23. 23.
    H.H. Zeineldin, A.F. Zobaa, Particle swarm optimization of passive filters for industrial plants in distribution networks. Electr. Power Compon. Syst. 39(16), 1795–1808 (2011)CrossRefGoogle Scholar
  24. 24.
    I. Ziari, A. Jalilian, Optimal allocation and sizing of active power line conditioners using a new particle swarm optimization-based approach. Electr. Power Compon. Syst. 40(12), 273–291 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.Y. Hong, W.J. Liao, Optimal passive filter planning considering probabilistic parameters using cumulant and adaptive dynamic clone selection algorithm. Int. J. Electr. Power Energy Syst. 45(1), 159–166 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi, Optimal placement of active power conditioner in distribution systems using improved discrete firefly algorithm for power quality enhancement. Appl. Soft Comput. 23, 249–258 (2014)CrossRefGoogle Scholar
  27. 27.
    A.F. Zobaa, Optimal multiobjective design of hybrid active power filters considering a distorted environment. IEEE Trans. Ind. Electron. 61(1), 107.114 (2014)CrossRefGoogle Scholar
  28. 28.
    A.F. Zobaa, S.H.E. Abdel Aleem, A new approach for harmonic distortion minimization in power systems supplying nonlinear loads. IEEE Trans. Ind. Inf. 10(2), 1401–1412 (2014)CrossRefGoogle Scholar
  29. 29.
    N.C. Yang, M.D. Le, Optimal design of passive power filters based on multi-objective bat algorithm and Pareto front. Appl. Soft Comput. 35, 257–266 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Mohammadi, Bacterial foraging optimization and adaptive version for economically optimum sitting, sizing and harmonic tuning orders setting of LC harmonic passive power filters in radial distribution systems with linear and nonlinear loads. Appl. Soft Comput. 29, 345–356 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Carpinelli, D. Proto, A. Russo, Optimal planning of active power filters in a distribution system using trade-off/risk method. IEEE Trans. Power Deliv. 32(2), 841–851 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Frank, I. Steponavice, S. Rebennack, Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Frank, I. Steponavice, S. Rebennack, Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)CrossRefGoogle Scholar
  34. 34.
    E. Rosenblueth, Point estimation for probability moments. Proc. Natl. Acad. Sci. U S A 72(10), 3812–3814 (1975)MathSciNetCrossRefGoogle Scholar
  35. 35.
    E. Rosenblueth, Two-point estimates in probability. Appl. Math. Model. 5, 329–335 (1981)MathSciNetCrossRefGoogle Scholar
  36. 36.
    H.P. Hong, An efficient point estimate method for probabilistic analysis. Reliab. Eng. Syst. Saf. 59, 261–267 (1998)CrossRefGoogle Scholar
  37. 37.
    N. He, D. Xu, L. Huang, The application of particle swarm optimization to passive and hybrid active power filter design. IEEE Trans. Ind. Electron. 56(8), 2841–2851 (2009)CrossRefGoogle Scholar
  38. 38.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Kiani-Moghaddam
    • 1
  • Mojtaba Shivaie
    • 2
  • Philip D. Weinsier
    • 3
  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Faculty of Electrical Engineering and RoboticShahrood University of TechnologyShahroodIran
  3. 3.Department of Applied Electrical EngineeringBowling Green State University FirelandsHuronUSA

Personalised recommendations