Power Systems Operation

  • Mohammad Kiani-Moghaddam
  • Mojtaba Shivaie
  • Philip D. Weinsier
Part of the Power Systems book series (POWSYS)


The second part of the book starts with Chap.  5, which is devoted to an innovative, two-level computational-logical framework for a bilateral bidding mechanism within a competitive security-constrained electricity market. In this chapter, a comprehensive survey related to game theory is meticulously presented. Subsequently, the authors describe the formulation of a two-level computational-logical framework, including its mathematical model of first and second levels. In the first level, the generation and distribution companies maximize their profits. In the second level, however, the independent system operator clears the competitive security-constrained electricity market by considering additional objectives containing CO2, SO2, and NOx emissions.


Bilateral bidding mechanism Competitive security-constrained electricity market Independent system operator Two-level computational-logical framework 


  1. 1.
    L.L. Lai, Power System Restructuring and Deregulation, Trading Performance and Information Technology (John Wiley and Sons, UK, 2001)Google Scholar
  2. 2.
    M. Shahidehpour, M. Alomoush, Restructured Electrical Power Systems, Operation Trading and Volatility (Dekker, New York, 2001)Google Scholar
  3. 3.
    F.L. Denny, D.E. Dismukes, Power System Operation and Electricity Market (CRC Press, Boca Raton, FL, 2002)Google Scholar
  4. 4.
    D. Gan, D. Feng, J. Xie, Electricity Markets and Power System Economics, 1st edn. (CRC Press, Boca Raton, FL, 2013)CrossRefGoogle Scholar
  5. 5.
    E. Vaahedi, Practical Power System Operation (John Wiley and Sons, Hoboken, NJ, 2014)CrossRefGoogle Scholar
  6. 6.
    M. Shivaie, M.T. Ameli, K. Jenab, Towards new competitive electricity markets based on information transparency: hypaethral market. Int. Trans. Electr. Energy Syst. 25(8), 1621–1643 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Wang, Z. Zhou, A. Botterud, Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market-A state-of-the-art review. Energy 36, 4686–4700 (2011)CrossRefGoogle Scholar
  8. 8.
    J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (John Wiley and Sons, New York, 1944)zbMATHGoogle Scholar
  9. 9.
    M.J. Osborne, A. Rubinstein, A Course in Game Theory (The MIT Press, Cambridge, MA, 1994)zbMATHGoogle Scholar
  10. 10.
    D.S. Kirschen, G. Strbac, Fundamentals of Power System Economics (John Wiley and Sons, Chichester, 2004)CrossRefGoogle Scholar
  11. 11.
    T. Li, M. Shahidehpour, Strategic bidding of transmission-constrained GENCOs with incomplete information. IEEE Trans. Power Syst. 20(1), 437–447 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Ma, C. Jiang, Z. Hou, C. Wang, The formulation of the optimal strategies for the electricity producers based on the particle swarm optimization algorithm. IEEE Trans. Power Syst. 21(4), 1663–1671 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Bompard, Y. Ma, R. Napoli, G. Abrate, The demand elasticity impacts on the strategic bidding behavior of the electricity producers. IEEE Trans. Power Syst. 22(1), 188–197 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Fampa, L.A. Barroso, D. Candal, L. Simonetti, Bilevel optimization applied to strategic pricing in competitive electricity markets. Comput. Optim. Appl. 39(2), 121–142 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.D. Yucekaya, J. Valenzuela, G. Dozier, Strategic bidding in electricity markets using particle swarm optimization. Electr. Pow. Syst. Res. 79, 335–345 (2009)CrossRefGoogle Scholar
  16. 16.
    E. Bompard, W. Lu, R. Napoli, X. Jiang, A supply function model for representing the strategic bidding of the producers in constrained electricity markets. Int. J. Electr. Power Energy Syst. 32, 678–687 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Wang, Z. Zhou, A. Botterud, An evolutionary game approach to analyzing bidding strategies in electricity markets with elastic demand. Energy 36, 3459–3467 (2011)CrossRefGoogle Scholar
  18. 18.
    A.K. Jain, S.C. Srivastava, S.N. Singh, L. Srivastava, Strategic bidding in transmission constrained electricity markets using artificial bee colony algorithm. Electr. Power Compon. Syst. 40, 1768–1788 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Luo, C. Chung, H. Yang, X. Tong, Optimal bidding strategy for generation companies under CVaR constraint. Int. Trans. Electr. Energy Syst. 24, 1369–1384 (2014)CrossRefGoogle Scholar
  20. 20.
    E.G. Kardakos, C.K. Simoglou, A.G. Bakirtzis, Optimal bidding strategy in transmission-constrained electricity markets. Electr. Pow. Syst. Res. 109, 141–149 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Gao, G.B. Sheble, K.W. Hedman, C.N. Yu, Optimal bidding strategy for GENCOs based on parametric linear programming considering incomplete information. Int. J. Electr. Power Energy Syst. 66, 272–279 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Koschker, D. Möst, Perfect competition vs. strategic behaviour models to derive electricity prices and the influence of renewables on market power. OR Spectr. 38(3), 661–686 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A.J. Wood, B. Wollenberg, Power Generation, Operation and Control, 2nd edn. (John Wiley and Sons, New York, 1996)Google Scholar
  24. 24.
    M. Shahidehpour, H. Yamin, Z. Li, Market Operations in Electric Power Systems (John Wiley and Sons, New York, 2002)CrossRefGoogle Scholar
  25. 25.
    E. Litvinov, Design and operation of the locational marginal prices-based electricity markets. IET Gener. Transm. Distrib. 4(2), 315–323 (2010)CrossRefGoogle Scholar
  26. 26.
    R.D. Christie, B.F. Wollenberg, I. Wangensteen, Transmission management in the deregulated environment. Proc. IEEE 88, 170–195 (2000)CrossRefGoogle Scholar
  27. 27.
    M. Shivaie, M.T. Ameli, A stochastic framework for multi-stage generation expansion planning under environmental and techno-economic constraints. Electr. Power Compon. Syst. 44(17), 1917–1934 (2016)CrossRefGoogle Scholar
  28. 28.
    M.A. Abido, Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003)CrossRefGoogle Scholar
  29. 29.
    M.A. Abido, Multi-objective evolutionary algorithms for power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006)CrossRefGoogle Scholar
  30. 30.
    L. Wang, C. Singh, Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electr. Pow. Syst. Res. 77, 1654–1664 (2007)CrossRefGoogle Scholar
  31. 31.
    I. Kockar, A.J. Conejo, J.R. McDonald, Influence of the emissions trading scheme on generation scheduling. Int. J. Electr. Power Energy Syst. 31, 465–473 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Li, Y. Li, Z. Li, A multiperiod energy acquisition model for a distribution company with distributed generation and interruptible load. IEEE Trans. Power Syst. 22(2), 588–596 (2007)CrossRefGoogle Scholar
  33. 33.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Kiani-Moghaddam
    • 1
  • Mojtaba Shivaie
    • 2
  • Philip D. Weinsier
    • 3
  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Faculty of Electrical Engineering and RoboticShahrood University of TechnologyShahroodIran
  3. 3.Department of Applied Electrical EngineeringBowling Green State University FirelandsHuronUSA

Personalised recommendations