Introduction to Multi-objective Optimization and Decision-Making Analysis

  • Mohammad Kiani-Moghaddam
  • Mojtaba Shivaie
  • Philip D. Weinsier
Part of the Power Systems book series (POWSYS)


In this chapter, the necessity of utilizing a multi-objective optimization process is rigorously elucidated. Afterwards, the fundamental concepts of optimization in multi-objective optimization problems are thoroughly described in five sections: (1) mathematical description of a multi-objective optimization problem; (2) concepts related to efficiency, efficient frontier, and dominance; (3) concepts relevant to Pareto optimality; (4) concepts associated with the vector of ideal objective functions and the vector of nadir objective functions; and (5) concepts pertaining to Pareto optimality investigation. In this chapter, the authors also provide an exhaustive classification of the multi-objective optimization algorithms by concentrating on the role of the decision maker in the solution process, which are then broken down into two approaches: (1) noninteractive and (2) interactive. Noninteractive approaches are further divided into four classes, including basic, no-preference, a priori, and a posteriori approaches. The fuzzy satisfying method is then extensively expressed in order to select the final optimal compromise solution from the Pareto-optimal solution set.


A posteriori approaches A priori approaches Basic approaches Efficient frontier Fuzzy satisfying method Interactive approaches Multi-objective optimization problems Noninteractive approaches No-preference approaches Pareto optimality 


  1. 1.
    J. Branke, K. Deb, K. Miettinen, Multiobjective Optimization: Interactive and Evolutionary Approaches (Springer, New York, 2008)CrossRefGoogle Scholar
  2. 2.
    R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic Publishers, Boston, MA, 1999)zbMATHGoogle Scholar
  4. 4.
    A.M. Geoffrion, Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.P. Benson, Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26(4), 569–580 (1978)MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Zadeh, Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963)CrossRefGoogle Scholar
  7. 7.
    Y.Y. Haimes, L.S. Lasdon, D.A. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. Chankong, Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology (Elsevier Science Publishing, New York, 1983)zbMATHGoogle Scholar
  9. 9.
    P.L. Yu, A class of solutions for group decision problems. Manag. Sci. 19(8), 936–946 (1973)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.P. Wierzbicki, Reference point approaches, in Multicriteria Decision Making, Chapter 9, vol. 21, (Springer, New York, 1999), pp. 237–275CrossRefGoogle Scholar
  11. 11.
    R.L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Wiley, Chichester, 1976)zbMATHGoogle Scholar
  12. 12.
    P.C. Fishburn, Lexicographic orders, utilities and decision rules: a survey. Manag. Sci. 20(11), 1442–1471 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Charnes, W.W. Cooper, Goal programming and multiple objective optimization: part 1. Eur. J. Oper. Res. 1(1), 39–54 (1977)CrossRefGoogle Scholar
  14. 14.
    A.P. Wierzbicki, A mathematical basis for satisficing decision making. Mathematical Modelling 3(5), 391–405 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Ruzika, M.M. Wiecek, Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Sakawa, H. Yano, An interactive fuzzy satisfying method using augmented minimax problems and its application to environmental systems. IEEE Trans. Syst. Man Cybern. 17(6), 720–729 (1985)CrossRefGoogle Scholar
  17. 17.
    M. Sakawa, K. Yauchi, An interactive fuzzy satisficing method for multiobjective nonconvex programming problems through floating point genetic algorithms. Eur. J. Oper. Res. 117(1), 113–124 (1999)CrossRefGoogle Scholar
  18. 18.
    C. Kahraman, Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments (Springer, New York, 2008)CrossRefGoogle Scholar
  19. 19.
    M. Kiani-Moghaddam, M. Shivaie, A. Salemnia, M.T. Ameli, Probabilistic multi-objective framework for multiple active power filters planning. Electr. Power Compon. Syst. 45(18), 2062–2077 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Sakawa, H. Yano, An interactive fuzzy satisfying method for multi-objective nonlinear programming problems with fuzzy parameters. Fuzzy Sets Syst. 30(3), 221–238 (1989)CrossRefGoogle Scholar
  21. 21.
    Y.L. Chen, An interactive fuzzy-norm satisfying method for multi-objective reactive power sources planning. IEEE Trans. Power Syst. 15(3), 1154–1160 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Kiani-Moghaddam
    • 1
  • Mojtaba Shivaie
    • 2
  • Philip D. Weinsier
    • 3
  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Faculty of Electrical Engineering and RoboticShahrood University of TechnologyShahroodIran
  3. 3.Department of Applied Electrical EngineeringBowling Green State University FirelandsHuronUSA

Personalised recommendations