Advertisement

Adding Insult to Injury: Improving the Regenerative Capacity of the Aged Thymus Following Clinically Induced Damage

  • Jarrod Dudakov
  • Michael L. Hun
  • Kahlia Wong
  • Georg Holländer
  • Ann P. ChidgeyEmail author
Chapter

Abstract

T cell development in the thymus requires constant interactions between developing thymocytes and the surrounding resident stromal cells (TSCs). These functional, non-hematopoietic-derived cells are predominantly of epithelial origin and constitute 1% of total thymus cellularity. Thymic function and naïve T cell output are optimal in humans during the early years of life, but decline sharply after the first years of life and further after the onset of puberty, with progressive contraction of functional thymus tissue. The loss of thymic epithelial cells (TECs) eventually results in an altered microenvironment that affects normal T cell development, reducing naïve T cell output and contributing to the overall demise of immune functions. Other extrinsic factors that exacerbate the effects of thymic involution include cytoreductive conditioning regimes in the context of cancer treatments and hematopoietic stem cell transplantation (HSCT). In these scenarios, elderly patients are incapable of full immune recovery. With such complications present, we describe herein various preclinical approaches that could lead to potential new treatment strategies to restore thymic function and, more importantly, T-cell mediated immunity following clinically induced damage (Fig. 13.1).

References

  1. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25(2):238–243PubMedCrossRefGoogle Scholar
  2. Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11(4):273–282PubMedCrossRefGoogle Scholar
  3. Al-Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M (2016) Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell 15(2):349–360PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alpdogan O, van den Brink MR (2005) IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26(1):56–64PubMedCrossRefGoogle Scholar
  5. Alpdogan O, Muriglan SJ, Eng JM, Willis LM, Greenberg AS, Kappel BJ, van den Brink MR (2003a) IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 112(7):1095–1107PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alpdogan O, Muriglan SJ, Kappel BJ, Doubrovina E, Schmaltz C, Schiro R, Eng JM, Greenberg AS, Willis LM, Rotolo JA, O’Reilly RJ, van den Brink MR (2003b) Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 75(12):1977–1983PubMedCrossRefGoogle Scholar
  7. Alpdogan O, Eng JM, Muriglan SJ, Willis LM, Hubbard VM, Tjoe KH, Terwey TH, Kochman A, van den Brink MR (2005) Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 105(2):865–873PubMedCrossRefGoogle Scholar
  8. Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J, Kochman AA, Eng JM, Suh D, Muriglan SJ, Boyd RL, van den Brink MR (2006) Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107(6):2453–2460PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alves NL, Richard-Le Goff O, Huntington ND, Sousa AP, Ribeiro VS, Bordack A, Vives FL, Peduto L, Chidgey A, Cumano A, Boyd R, Eberl G, Di Santo JP (2009) Characterization of the thymic IL-7 niche in vivo. Proc Natl Acad Sci U S A 106(5):1512–1517PubMedPubMedCentralCrossRefGoogle Scholar
  10. Alves NL, Huntington ND, Mention JJ, Richard-Le Goff O, Di Santo JP (2010) Cutting Edge: a thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo. J Immunol 184(11):5949–5953PubMedCrossRefGoogle Scholar
  11. Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1(1):31–40PubMedCrossRefPubMedCentralGoogle Scholar
  12. Arber C, BitMansour A, Sparer TE, Higgins JP, Mocarski ES, Weissman IL, Shizuru JA, Brown JM (2003) Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 102(2):421–428PubMedCrossRefPubMedCentralGoogle Scholar
  13. Aspinall R, Andrew D (2000) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18(16):1629–1637PubMedCrossRefPubMedCentralGoogle Scholar
  14. Ault KA, Antin JH, Ginsburg D, Orkin SH, Rappeport JM, Keohan ML, Martin P, Smith BR (1985) Phenotype of recovering lymphoid cell populations after marrow transplantation. J Exp Med 161(6):1483–1502PubMedCrossRefPubMedCentralGoogle Scholar
  15. Awong G, Herer E, Surh CD, Dick JE, La Motte-Mohs RN, Zuniga-Pflucker JC (2009) Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 114(5):972–982PubMedCrossRefPubMedCentralGoogle Scholar
  16. Awong G, Singh J, Mohtashami M, Malm M, La Motte-Mohs RN, Benveniste P, Serra P, Herer E, van den Brink M, Zúñiga-Pflücker JC (2013) Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 122(26):4210–4219PubMedPubMedCentralCrossRefGoogle Scholar
  17. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Hollander GA (2002) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3(11):1102–1108PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bando JK, Gilfillan S, Song C, McDonald KG, Huang SCC, Newberry RD, Kobayashi Y, Allan DSJ, Carlyle JR, Cella M, Colonna M (2018) The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells. Immunity 48(6):1208–1219PubMedCrossRefPubMedCentralGoogle Scholar
  19. Barsanti M, Lim J, Hun ML, Lister N, Wong K, Hammett MV, Lepletier A, Boyd RL, Giudice A, Chidgey AP (2017) A novel Foxn1eGFP/+ mouse model identifies Bmp4-induced maintenance of Foxn1 expression and thymic epithelial progenitor populations. Eur J Immunol 47(2):291–304PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16(6):803–814PubMedCrossRefGoogle Scholar
  21. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16(9):902–908PubMedPubMedCentralCrossRefGoogle Scholar
  23. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chaudhry MS, Velardi E, Dudakov JA, Brink MR (2016) Thymus: the next (re)generation. Immunol Rev 271(1):56–71PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y (2007) IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol 35(2):203–213PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chen J, Wang J, Li J, Wu Q, Chu Lim F, Yang P, Hsu HC, Curiel DT, Mountz JD (2008a) Enhancement of cytotoxic T-lymphocyte response in aged mice by a novel treatment with recombinant AdIL-12 and wild-type adenovirus in rapid succession. Mol Ther 16(8):1500–1506PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen X, Esplin BL, Garrett KP, Welner RS, Webb CF, Kincade PW (2008b) Retinoids accelerate B lineage lymphoid differentiation. J Immunol 180(1):138–145PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113(3):567–574PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chidgey A, Dudakov J, Seach N, Boyd R (2007) Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol 19(5):331–340PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chidgey AP, Seach N, Dudakov J, Hammett MV, Boyd RL (2008) Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Semin Immunopathol 30:457–477PubMedCrossRefGoogle Scholar
  31. Chu YW, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, Lucas PJ, Gress RE (2004) Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 104(4):1110–1119PubMedCrossRefGoogle Scholar
  32. Chu YW, Schmitz S, Choudhury B, Telford W, Kapoor V, Garfield S, Howe D, Gress RE (2008) Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112(7):2836–2846PubMedPubMedCentralCrossRefGoogle Scholar
  33. Clave E, Rocha V, Talvensaari K, Busson M, Douay C, Appert ML, Rabian C, Carmagnat M, Garnier F, Filion A, Socie G, Gluckman E, Charron D, Toubert A (2005) Prognostic value of pretransplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood 105(6):2608–2613PubMedCrossRefGoogle Scholar
  34. Conn PM, Crowley WF Jr (1994) Gonadotropin-releasing hormone and its analogs. Annu Rev Med 45:391–405PubMedCrossRefGoogle Scholar
  35. Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T (2010) Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A 107(38):16613–16618PubMedPubMedCentralCrossRefGoogle Scholar
  36. de Pooter R, Zuniga-Pflucker JC (2007) T-cell potential and development in vitro: the OP9-DL1 approach. Curr Opin Immunol 19(2):163–168PubMedCrossRefGoogle Scholar
  37. Decman V, Laidlaw BJ, Doering TA, Leng J, Ertl HC, Goldstein DR, Wherry EJ (2012) Defective CD8 T cell responses in aged mice are due to quantitative and qualitative changes in virus-specific precursors. J Immunol 188(4):1933–1941PubMedPubMedCentralCrossRefGoogle Scholar
  38. Depreter MG, Blair NF, Gaskell TL, Nowell CS, Davern K, Pagliocca A, Stenhouse FH, Farley AM, Fraser A, Vrana J, Robertson K, Morahan G, Tomlinson SR, Blackburn CC (2008) Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc Natl Acad Sci U S A 105(3):961–966PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, Rafii S (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147(3):539–553PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505(7481):97–102PubMedCrossRefGoogle Scholar
  42. Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith RG, Taub DD (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117(10):2778–2790PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dudakov JA, Goldberg GL, Reiseger JJ, Chidgey AP, Boyd RL (2009a) Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis. J Immunol 182(10):6247–6260PubMedCrossRefGoogle Scholar
  44. Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL (2009b) Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J Immunol 183(11):7084–7094PubMedCrossRefGoogle Scholar
  45. Dudakov JA, Khong DMP, Boyd RL, Chidgey AP (2010) Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 31(5):191–198PubMedCrossRefGoogle Scholar
  46. Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, West ML, Smith OM, Holland AM, Tsai JJ, Boyd RL, van den Brink MRM (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91–95PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dudakov JA, Mertelsmann AM, O’Connor MH, Jenq RR, Velardi E, Young LF, Smith OM, Boyd RL, van den Brink MRM, Hanash AM (2017) Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 130(7):933–942PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dumont-Girard F, Roux E, van Lier RA, Hale G, Helg C, Chapuis B, Starobinski M, Roosnek E (1998) Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 92(11):4464–4471PubMedGoogle Scholar
  49. Ellis TM, Moser MT, Le PT, Flanigan RC, Kwon ED (2001) Alterations in peripheral B cells and B cell progenitors following androgen ablation in mice. Int Immunol 13(4):553–558PubMedCrossRefGoogle Scholar
  50. Erben RG, Raith S, Eberle J, Stangassinger M (1998) Ovariectomy augments B lymphopoiesis and generation of monocyte-macrophage precursors in rat bone marrow. Am J Physiol 274(3 Pt 1):E476–E483PubMedGoogle Scholar
  51. Erben RG, Eberle J, Stangassinger M (2001) B lymphopoiesis is upregulated after orchiectomy and is correlated with estradiol but not testosterone serum levels in aged male rats. Horm Metab Res 33(8):491–498PubMedCrossRefGoogle Scholar
  52. Fagnoni FF, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N, Oliviero B, Pavesi L, Gennari R, Vescovini R, Sansoni P, Da Prada G, Robustelli Della Cuna G (2002) T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology 106(1):27–37PubMedPubMedCentralCrossRefGoogle Scholar
  53. Flomerfelt FA, El Kassar N, Gurunathan C, Chua KS, League SC, Schmitz S, Gershon TR, Kapoor V, Yan XY, Schwartz RH, Gress RE (2010) Tbata modulates thymic stromal cell proliferation and thymus function. J Exp Med 207(11):2521–2532PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fry TJ, Moniuszko M, Creekmore S, Donohue SJ, Douek DC, Giardina S, Hecht TT, Hill BJ, Komschlies K, Tomaszewski J, Franchini G, Mackall CL (2003) IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101(6):2294–2299PubMedCrossRefGoogle Scholar
  55. Fry TJ, Sinha M, Milliron M, Chu YW, Kapoor V, Gress RE, Thomas E, Mackall CL (2004) Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104(9):2794–2800PubMedCrossRefGoogle Scholar
  56. Garfin PM, Min D, Bryson JL, Serwold T, Edris B, Blackburn CC, Richie ER, Weinberg KI, Manley NR, Sage J, Viatour P (2013) Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. J Exp Med 210(6):1087–1097PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gill J, Malin M, Hollander GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3(7):635–642PubMedCrossRefGoogle Scholar
  58. Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TS, Chidgey AP, Boyd RL (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80(11):1604–1613PubMedCrossRefGoogle Scholar
  59. Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM, Hubbard VM, Kochman A, Willis LM, Greenberg AS, Tjoe KH, Sutherland JS, Chidgey A, van den Brink MRM, Boyd RL (2007) Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 178(11):7473–7484PubMedCrossRefGoogle Scholar
  60. Goldberg GL, King CG, Nejat RA, Suh DY, Smith OM, Bretz JC, Samstein RM, Dudakov JA, Chidgey AP, Chen-Kiang S, Boyd RL, van den Brink MRM (2009) Luteinizing hormone-releasing hormone enhances T cell recovery following allogeneic bone marrow transplantation. J Immunol 182(9):5846–5854PubMedPubMedCentralCrossRefGoogle Scholar
  61. Goldberg GL, Dudakov JA, Reiseger JJ, Seach N, Ueno T, Vlahos K, Hammett MV, Young LF, Heng TSP, Boyd RL, Chidgey AP (2010) Sex steroid ablation enhances immune reconstitution following cytotoxic antineoplastic therapy in young mice. J Immunol 184(11):6014–6024PubMedCrossRefGoogle Scholar
  62. Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339(1):141–154PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gratama JW, Naipal A, Oljans P, Zwaan FE, Verdonck LF, de Witte T, Vossen JM, Bolhuis RL, de Gast GC, Jansen J (1984) T lymphocyte repopulation and differentiation after bone marrow transplantation. Early shifts in the ratio between T4+ and T8+ T lymphocytes correlate with the occurrence of acute graft-versus-host disease. Blood 63(6):1416–1423PubMedGoogle Scholar
  64. Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108(12):3777–3785PubMedPubMedCentralCrossRefGoogle Scholar
  65. Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112(3):345–350PubMedCrossRefGoogle Scholar
  66. Grimaldi CM, Jeganathan V, Diamond B (2006) Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J Immunol 176(5):2703–2710PubMedCrossRefGoogle Scholar
  67. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, Odom J, Vance BA, Christensen BL, Mackall CL, Gress RE (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 115(4):930–939PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hauri-Hohl MM, Zuklys S, Keller MP, Jeker LT, Barthlott T, Moon AM, Roes J, Hollander GA (2008) TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 112(3):626–634PubMedPubMedCentralCrossRefGoogle Scholar
  70. Heitger A, Neu N, Kern H, Panzer-Grumayer ER, Greinix H, Nachbaur D, Niederwieser D, Fink FM (1997) Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 90(2):850–857PubMedGoogle Scholar
  71. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175(5):2982–2993PubMedCrossRefGoogle Scholar
  72. Heng TSP, Chidgey AP, Boyd RL (2010) Getting back at nature: understanding thymic development and overcoming its atrophy. Curr Opin Pharmacol 10(4):425–433PubMedCrossRefGoogle Scholar
  73. Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R (2005) An IL-7 fusion protein that shows increased thymopoietic ability. J Immunol 175(6):4112–4118PubMedCrossRefGoogle Scholar
  74. Herasimtschuk AA, Westrop SJ, Moyle GJ, Downey JS, Imami N (2008) Effects of recombinant human growth hormone on HIV-1-specific T-cell responses, thymic output and proviral DNA in patients on HAART: 48-week follow-up. J Immune Based Ther Vaccines 6:7PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hirokawa K, Makinodan T (1975) Thymic involution: effect on T cell differentiation. J Immunol 114(6):1659–1664PubMedGoogle Scholar
  76. Holland AM, Zakrzewski JL, Goldberg GL, Ghosh A, van den Brink MR (2008) Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man. Semin Immunopathol 30:479–487PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hollander GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, Burakoff SJ, Gutierrez-Ramos JC, Terhorst C (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373(6512):350–353CrossRefGoogle Scholar
  78. Holmes R, Zuniga-Pflucker JC (2009) The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb Protoc 2009(2):pdb.prot5156PubMedCrossRefGoogle Scholar
  79. Igarashi H, Kouro T, Yokota T, Comp PC, Kincade PW (2001) Age and stage dependency of estrogen receptor expression by lymphocyte precursors. Proc Natl Acad Sci U S A 98(26):15131–15136PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jaffe HL (1924) The influence of the suprarenal gland on the thymus: I. Regeneration of the thymus following double suprarenalectomy in the rat. J Exp Med 40(3):325–342PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jeker LT, Barthlott T, Keller MP, Zuklys S, Hauri-Hohl M, Deng C-X, Holländer GA (2008) Maintenance of a normal thymic microenvironment and T-cell homeostasis require Smad4-mediated signaling in thymic epithelial cells. Blood 112(9):3688–3695PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jenkinson WE, Bacon A, White AJ, Anderson G, Jenkinson EJ (2008) An epithelial progenitor pool regulates thymus growth. J Immunol 181(9):6101–6108PubMedCrossRefGoogle Scholar
  83. Kang J, Der SD (2004) Cytokine functions in the formative stages of a lymphocyte’s life. Curr Opin Immunol 16(2):180–190PubMedCrossRefGoogle Scholar
  84. Kelly RM, Highfill SL, Panoskaltsis-Mortari A, Taylor PA, Boyd RL, Hollander GA, Blazar BR (2008) Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood 111(12):5734–5744PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kelly RM, Goren EM, Taylor PA, Mueller SN, Stefanski HE, Osborn MJ, Scott HS, Komarova EA, Gudkov AV, Hollander GA, Blazar BR (2010) Short-term inhibition of p53 combined with keratinocyte growth factor improves thymic epithelial cell recovery and enhances T-cell reconstitution after murine bone marrow transplantation. Blood 115(5):1088–1097.  https://doi.org/10.1182/blood-2009-05-223198CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kenins L, Gill JW, Boyd RL, Hollander GA, Wodnar-Filipowicz A (2008) Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J Exp Med 205(3):523–531PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ki S, Park D, Selden HJ, Seita J, Chung H, Kim J, Iyer VR, Ehrlich LIR (2014) Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution. Cell Rep 9(1):402–415PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kincade PW, Medina KL, Payne KJ, Rossi MI, Tudor KS, Yamashita Y, Kouro T (2000) Early B-lymphocyte precursors and their regulation by sex steroids. Immunol Rev 175:128–137PubMedCrossRefGoogle Scholar
  89. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L, Rafii S (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12(11):1046–1056PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kvell K, Varecza Z, Bartis D, Hesse S, Parnell S, Anderson G, Jenkinson EJ, Pongracz JE (2010) Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One 5(5):e10701PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lai L, Jin J (2009) Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells 27(12):3012–3020PubMedGoogle Scholar
  92. Lai L, Cui C, Jin J, Hao Z, Zheng Q, Ying M, Boyd R, Zhao Y (2011) Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood 118(12):3410–3418PubMedCrossRefGoogle Scholar
  93. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15(10):965–972PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lanna A, Gomes DC, Muller-Durovic B, McDonnell T, Escors D, Gilroy DW, Lee JH, Karin M, Akbar AN (2017) A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol 18(3):354–363PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lepletier A, Hun M, Hammett M, Wong K, Naeem H, Hedger M, Loveland K, Chidgey AP (2019) Interplay between activin bA follistatin and Bmp4 signalling regulates postnatal thymic epithelial progenitor self-renewal and differentiation. Cell Reports http://dx.doi.org/10.2139/ssrn.3305565
  96. Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, Boue F, Molina JM, Rouzioux C, Avettand-Fenoel V, Croughs T, Beq S, Thiebaut R, Chene G, Morre M, Delfraissy JF (2009) Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 119(4):997–1007PubMedPubMedCentralGoogle Scholar
  97. Levy Y, Sereti I, Tambussi G, Routy JP, Lelievre JD, Delfraissy JF, Molina JM, Fischl M, Goujard C, Rodriguez B, Rouzioux C, Avettand-Fenoel V, Croughs T, Beq S, Morre M, Poulin JF, Sekaly RP, Thiebaut R, Lederman MM (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li L, Hsu HC, Stockard CR, Yang P, Zhou J, Wu Q, Grizzle WE, Mountz JD (2004) IL-12 inhibits thymic involution by enhancing IL-7- and IL-2-induced thymocyte proliferation. J Immunol 172(5):2909–2916PubMedCrossRefGoogle Scholar
  99. Liang CC, You LR, Yen JJ, Liao NS, Yang-Yen HF, Chen CM (2013) Thymic epithelial beta-catenin is required for adult thymic homeostasis and function. Immunol Cell Biol 91(8):511–523.  https://doi.org/10.1038/icb.2013.34CrossRefPubMedGoogle Scholar
  100. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139PubMedCrossRefGoogle Scholar
  101. Lopes N, Vachon H, Marie J, Irla M (2017) Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 9(6):835–851PubMedPubMedCentralCrossRefGoogle Scholar
  102. Love PE, Bhandoola A (2011) Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 11(7):469–477PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lu H, Zhao Z, Kalina T, Gillespy T III, Liggitt D, Andrews RG, Maloney DG, Kiem HP, Storek J (2005) Interleukin-7 improves reconstitution of antiviral CD4 T cells. Clin Immunol 114(1):30–41PubMedCrossRefGoogle Scholar
  104. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373PubMedPubMedCentralCrossRefGoogle Scholar
  105. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mackall CL, Gress RE (1997) Thymic aging and T-cell regeneration. Immunol Rev 160:91–102CrossRefGoogle Scholar
  107. Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84(7):2221–2228PubMedGoogle Scholar
  108. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Horowitz ME, Magrath IT, Shad AT, Steinberg SM et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332(3):143–149PubMedCrossRefGoogle Scholar
  109. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89(10):3700–3707PubMedGoogle Scholar
  110. Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11(5):330–342PubMedCrossRefGoogle Scholar
  111. Masuzawa T, Miyaura C, Onoe Y, Kusano K, Ohta H, Nozawa S, Suda T (1994) Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J Clin Invest 94(3):1090–1097PubMedPubMedCentralCrossRefGoogle Scholar
  112. Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L (2009) T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 30(7):301–305PubMedPubMedCentralCrossRefGoogle Scholar
  113. Medina KL, Garrett KP, Thompson LF, Rossi MI, Payne KJ, Kincade PW (2001) Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat Immunol 2(8):718–724PubMedCrossRefGoogle Scholar
  114. Miller JF (1961) Immunological function of the thymus. Lancet 2(7205):748–749CrossRefGoogle Scholar
  115. Min D, Taylor PA, Panoskaltsis-Mortari A, Chung B, Danilenko DM, Farrell C, Lacey DL, Blazar BR, Weinberg KI (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99(12):4592–4600PubMedCrossRefGoogle Scholar
  116. Min D, Panoskaltsis-Mortari A, Kuro OM, Hollander GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109(6):2529–2537PubMedPubMedCentralCrossRefGoogle Scholar
  117. Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, Schmidt D, Grant RM, Halvorsen RA, Schambelan M, McCune JM (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16(8):1103–1111PubMedCrossRefGoogle Scholar
  118. Napolitano LA, Schmidt D, Gotway MB, Ameli N, Filbert EL, Ng MM, Clor JL, Epling L, Sinclair E, Baum PD, Li K, Killian ML, Bacchetti P, McCune JM (2008) Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 118(3):1085–1098PubMedPubMedCentralGoogle Scholar
  119. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469–7481PubMedCrossRefGoogle Scholar
  120. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26(2):204–219PubMedCrossRefGoogle Scholar
  121. O’Neill KE, Bredenkamp N, Tischner C, Vaidya HJ, Stenhouse FH, Peddie CD, Nowell CS, Gaskell T, Blackburn CC (2016) Foxn1 is dynamically regulated in thymic epithelial cells during embryogenesis and at the onset of thymic involution. PLoS One 11(3):e0151666PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ohigashi I, Zuklys S, Sakata M, Mayer CE, Zhanybekova S, Murata S, Tanaka K, Hollander GA, Takahama Y (2013) Aire-expressing thymic medullary epithelial cells originate from beta5t-expressing progenitor cells. Proc Natl Acad Sci U S A 110(24):9885–9890PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ohigashi I, Kozai M, Takahama Y (2016) Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 271(1):10–22PubMedCrossRefPubMedCentralGoogle Scholar
  124. Olsen NJ, Kovacs WJ (2001) Effects of androgens on T and B lymphocyte development. Immunol Res 23(2–3):281–288PubMedCrossRefPubMedCentralGoogle Scholar
  125. Olsen NJ, Watson MB, Henderson GS, Kovacs WJ (1991) Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 129(5):2471–2476PubMedCrossRefPubMedCentralGoogle Scholar
  126. Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14(7):813–822PubMedCrossRefPubMedCentralGoogle Scholar
  127. Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M (2010) DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 5(2):e9062PubMedPubMedCentralCrossRefGoogle Scholar
  128. Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, Hebrok M (2013) Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13(2):219–229PubMedCrossRefPubMedCentralGoogle Scholar
  129. Perales MA, Goldberg JD, Yuan J, Koehne G, Lechner L, Papadopoulos EB, Young JW, Jakubowski AA, Zaidi B, Gallardo H, Liu C, Rasalan T, Wolchok JD, Croughs T, Morre M, Devlin SM, van den Brink MR (2012) Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120(24):4882–4891PubMedPubMedCentralCrossRefGoogle Scholar
  130. Prieyl JA, LeBien TW (1996) Interleukin 7 independent development of human B cells. Proc Natl Acad Sci U S A 93(19):10348–10353PubMedPubMedCentralCrossRefGoogle Scholar
  131. Quinn KM, Fox A, Harland KL, Russ BE, Li J, Nguyen THO, Loh L, Olshanksy M, Naeem H, Tsyganov K, Wiede F, Webster R, Blyth C, Sng XYX, Tiganis T, Powell D, Doherty PC, Turner SJ, Kedzierska K, La Gruta NL (2018) Age-related decline in primary CD8(+) T cell responses is associated with the development of senescence in virtual memory CD8(+) T cells. Cell Rep 23(12):3512–3524PubMedCrossRefGoogle Scholar
  132. Rafei M, Dumont-Lagace M, Rouette A, Perreault C (2013) Interleukin-21 accelerates thymic recovery from glucocorticoid-induced atrophy. PLoS One 8(9):e72801PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rafii S, Butler JM, Ding BS (2016a) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rafii S, Ginsberg M, Scandura J, Butler JM, Ding BS (2016b) Transplantation of endothelial cells to mitigate acute and chronic radiation injury to vital organs. Radiat Res 186(2):196–202PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reimann C, Dal Cortivo L, Hacein-Bey-Abina S, Fischer A, Andre-Schmutz I, Cavazzana-Calvo M (2010) Advances in adoptive immunotherapy to accelerate T-cellular immune reconstitution after HLA-incompatible hematopoietic stem cell transplantation. Immunotherapy 2(4):481–496PubMedCrossRefGoogle Scholar
  136. Ribeiro AR, Rodrigues PM, Meireles C, Di Santo JP, Alves NL (2013) Thymocyte selection regulates the homeostasis of IL-7–expressing thymic cortical epithelial cells in vivo. J Immunol 191(3):1200–1209PubMedCrossRefGoogle Scholar
  137. Rode I, Martins VC, Küblbeck G, Maltry N, Tessmer C, Rodewald H-R (2015) Foxn1 protein expression in the developing, aging, and regenerating thymus. J Immunol 195(12):5678–5687PubMedPubMedCentralCrossRefGoogle Scholar
  138. Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED (2004) Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173(10):6098–6108PubMedCrossRefGoogle Scholar
  139. Rodrigues PM, Ribeiro AR, Serafini N, Meireles C, Di Santo JP, Alves NL (2018) Intrathymic deletion of IL-7 reveals a contribution of the bone marrow to thymic rebound induced by androgen blockade. J Immunol.  https://doi.org/10.4049/jimmunol.1701112PubMedCrossRefGoogle Scholar
  140. Roosnek EE, Brouwer MC, Vossen JM, Roos MT, Schellekens PT, Zeijlemaker WP, Aarden LA (1987) The role of interleukin-2 in proliferative responses in vitro of T cells from patients after bone marrow transplantation. Evidence that minor defects can lead to in vitro unresponsiveness. Transplantation 43(6):855–860PubMedCrossRefGoogle Scholar
  141. Rosenberg SA, Sportes C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M, Buffet R, Mackall CL, Gress RE (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29(3):313–319PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rossi S, Blazar BR, Farrell CL, Danilenko DM, Lacey DL, Weinberg KI, Krenger W, Hollander GA (2002) Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100(2):682–691PubMedCrossRefGoogle Scholar
  143. Rossi SW, Chidgey AP, Parnell SM, Jenkinson WE, Scott HS, Boyd RL, Jenkinson EJ, Anderson G (2007a) Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol 37(9):2411–2418PubMedCrossRefGoogle Scholar
  144. Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, Blazar BR, Hollander GA (2007b) Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109(9):3803–3811PubMedPubMedCentralCrossRefGoogle Scholar
  145. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, Roosnek E (1996) Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 87(9):3984–3992PubMedGoogle Scholar
  146. Roux E, Dumont-Girard F, Starobinski M, Siegrist CA, Helg C, Chapuis B, Roosnek E (2000) Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood 96(6):2299–2303PubMedGoogle Scholar
  147. Schluns KS, Cook JE, Le PT (1997) TGF-beta differentially modulates epidermal growth factor-mediated increases in leukemia-inhibitory factor, IL-6, IL-1 alpha, and IL-1 beta in human thymic epithelial cells. J Immunol 158(6):2704–2712PubMedGoogle Scholar
  148. Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17(6):749–756PubMedCrossRefGoogle Scholar
  149. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322PubMedCrossRefGoogle Scholar
  150. Seach N, Layton D, Lim J, Chidgey A, Boyd R (2007) Thymic generation and regeneration: a new paradigm for establishing clinical tolerance of stem cell-based therapies. Curr Opin Biotechnol 18(5):441–447PubMedCrossRefGoogle Scholar
  151. Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore D, Crooks GM, Montel-Hagen A (2017) Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods 14(5):521–530PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164(4):2180–2187PubMedCrossRefGoogle Scholar
  153. Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF (2002) T cell receptor excision circle assessment of thymopoiesis in aging mice. [erratum appears in Mol Immunol 2002 Oct;39(5–6):379–80]. Mol Immunol 38(11):841–848PubMedCrossRefGoogle Scholar
  154. Sereti I, Dunham RM, Spritzler J, Aga E, Proschan MA, Medvik K, Battaglia CA, Landay AL, Pahwa S, Fischl MA, Asmuth DM, Tenorio AR, Altman JD, Fox L, Moir S, Malaspina A, Morre M, Buffet R, Silvestri G, Lederman MM (2009) IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 113(25):6304–6314PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sfikakis PP, Gourgoulis GM, Moulopoulos LA, Kouvatseas G, Theofilopoulos AN, Dimopoulos MA (2005) Age-related thymic activity in adults following chemotherapy-induced lymphopenia. Eur J Clin Investig 35(6):380–387CrossRefGoogle Scholar
  156. Shukla S, Langley MA, Singh J, Edgar JM, Mohtashami M, Zuniga-Pflucker JC, Zandstra PW (2017) Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1. Nat Methods 14(5):531–538PubMedCrossRefGoogle Scholar
  157. Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Hollander GA, Zuniga-Pflucker JC, Tolar J, Blazar BR (2017) T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2(10):92056PubMedCrossRefGoogle Scholar
  158. Soh C-L, Giudice A, Jenny RA, Elliott DA, Hatzistavrou T, Micallef SJ, Kianizad K, Seach N, Zúñiga-Pflücker JC, Chidgey AP, Trounson A, Nilsson SK, Haylock DN, Boyd RL, Elefanty AG, Stanley EG (2014) FOXN1GFP/w reporter hESCs enable identification of integrin-β4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1+ thymic epithelial progenitors. Stem Cell Rep 2(6):925–937CrossRefGoogle Scholar
  159. Soiffer RJ, Bosserman L, Murray C, Cochran K, Daley J, Ritz J (1990) Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood 75(10):2076–2084PubMedGoogle Scholar
  160. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205(7):1701–1714PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sportes C, Babb RR, Krumlauf MC, Hakim FT, Steinberg SM, Chow CK, Brown MR, Fleisher TA, Noel P, Maric I, Stetler-Stevenson M, Engel J, Buffet R, Morre M, Amato RJ, Pecora A, Mackall CL, Gress RE (2010) Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 16(2):727–735PubMedPubMedCentralCrossRefGoogle Scholar
  162. Storek J, Witherspoon RP, Storb R (1995) T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 16(3):413–425PubMedGoogle Scholar
  163. Storek J, Gooley T, Witherspoon RP, Sullivan KM, Storb R (1997) Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol 54(2):131–138PubMedCrossRefGoogle Scholar
  164. Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci U S A 90(19):9125–9129PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sun L, Guo J, Brown R, Amagai T, Zhao Y, Su DM (2010) Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell 9(3):347–357PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, Liu H, Su L, Du W, He Q, Chen F, Shi Y, Deng H (2013) Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13(2):230–236PubMedCrossRefGoogle Scholar
  167. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741–2753PubMedCrossRefGoogle Scholar
  168. Sutherland JS, Spyroglou L, Muirhead JL, Heng TS, Prieto-Hinojosa A, Prince HM, Chidgey AP, Schwarer AP, Boyd RL (2008) Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin Cancer Res 14(4):1138–1149PubMedCrossRefGoogle Scholar
  169. Taguchi T, Takenouchi H, Matsui J, Tang WR, Itagaki M, Shiozawa Y, Suzuki K, Sakaguchi S, Ktagiri YU, Takahashi T, Okita H, Fujimoto J, Kiyokawa N (2006) Involvement of insulin-like growth factor-I and insulin-like growth factor binding proteins in pro-B-cell development. Exp Hematol 34(4):508–518PubMedCrossRefGoogle Scholar
  170. Tajima A, Pradhan I, Trucco M, Fan Y (2016) Restoration of thymus function with bioengineered thymus organoids. Curr Stem Cell Rep 2(2):128–139PubMedPubMedCentralCrossRefGoogle Scholar
  171. Talaber G, Kvell K, Varecza Z, Boldizsar F, Parnell SM, Jenkinson EJ, Anderson G, Berki T, Pongracz JE (2011) Wnt-4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuvenation Res 14(3):241–248PubMedPubMedCentralCrossRefGoogle Scholar
  172. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93PubMedCrossRefGoogle Scholar
  173. Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noe B, Wang H, Rafei M (2017) Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol 10(1):120PubMedPubMedCentralCrossRefGoogle Scholar
  174. Ulyanchenko S, O’Neill KE, Medley T, Farley AM, Vaidya HJ, Cook AM, Blair NF, Blackburn CC (2016) Identification of a bipotent epithelial progenitor population in the adult thymus. Cell Rep 14(12):2819–2832PubMedPubMedCentralCrossRefGoogle Scholar
  175. van den Broek T, Delemarre EM, Janssen WJM, Nievelstein RAJ, Broen JC, Tesselaar K, Borghans JAM, Nieuwenhuis EES, Prakken BJ, Mokry M, Jansen NJG, van Wijk F (2016) Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J Clin Invest 126(3):1126–1136PubMedPubMedCentralCrossRefGoogle Scholar
  176. Varecza Z, Kvell K, Talaber G, Miskei G, Csongei V, Bartis D, Anderson G, Jenkinson EJ, Pongracz JE (2011) Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mech Ageing Dev 132(5):249–256PubMedPubMedCentralCrossRefGoogle Scholar
  177. Velardi E, Dudakov JA, Van den Brink MRM (2013) Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunol Lett 155(1–2):31–35PubMedCrossRefGoogle Scholar
  178. Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VWC, Zakrzewski JL, Tuckett AZ, Singer NV, West ML, Smith OM, Young LF, Kreines FM, Levy ER, Boyd RL, Scadden DT, Dudakov JA, van den Brink MRM (2014) Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. J Exp Med 211(12):2341–2349PubMedPubMedCentralCrossRefGoogle Scholar
  179. Velardi E, Dudakov JA, van den Brink MR (2015) Sex steroid ablation: an immunoregenerative strategy for immunocompromised patients. Bone Marrow Transplant 50(Suppl 2):S77–S81PubMedPubMedCentralCrossRefGoogle Scholar
  180. Velardi E, Tsai JJ, Radtke S, Cooper K, Argyropoulos KV, Jae-Hung S, Young LF, Lazrak A, Smith OM, Lieberman S, Kreines F, Shono Y, Wertheimer T, Jenq RR, Hanash AM, Narayan P, Lei Z, Moore MA, Kiem HP, van den Brink MRM, Dudakov JA (2018) Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nat Med 24(2):239–246PubMedPubMedCentralCrossRefGoogle Scholar
  181. Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ (1997) Androgens alter B cell development in normal male mice. Cell Immunol 182(2):99–104PubMedCrossRefGoogle Scholar
  182. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R (1995) The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transplant 1(1):18–23PubMedGoogle Scholar
  183. Wertheimer T, Velardi E, Tsai J, Cooper K, Xiao S, Kloss CC, Ottmüller KJ, Mokhtari Z, Brede C, deRoos P, Kinsella S, Palikuqi B, Ginsberg M, Young LF, Kreines F, Lieberman SR, Lazrak A, Guo P, Malard F, Smith OM, Shono Y, Jenq RR, Hanash AM, Nolan DJ, Butler JM, Beilhack A, Manley NR, Rafii S, Dudakov JA, van den Brink MRM (2018) Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci Immunol 3(19).  https://doi.org/10.1126/sciimmunol.aal2736PubMedPubMedCentralCrossRefGoogle Scholar
  184. Williams KM, Lucas PJ, Bare CV, Wang J, Chu YW, Tayler E, Kapoor V, Gress RE (2008) CCL25 increases thymopoiesis after androgen withdrawal. Blood 112(8):3255–3263PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wils EJ, Braakman E, Verjans GM, Rombouts EJ, Broers AE, Niesters HG, Wagemaker G, Staal FJ, Lowenberg B, Spits H, Cornelissen JJ (2007) Flt3 ligand expands lymphoid progenitors prior to recovery of thymopoiesis and accelerates T cell reconstitution after bone marrow transplantation. J Immunol 178(6):3551–3557PubMedCrossRefGoogle Scholar
  186. Wils EJ, Aerts-Kaya FS, Rombouts EJ, van Mourik I, Rijken-Schelen A, Visser TP, Braakman E, Wagemaker G, Cornelissen JJ (2012) Keratinocyte growth factor and stem cell factor to improve thymopoiesis after autologous CD34+ cell transplantation in rhesus macaques. Biol Blood Marrow Transplant 18(1):55–65PubMedCrossRefGoogle Scholar
  187. Wong K, Lister Natalie L, Barsanti M, Lim Joanna MC, Hammett Maree V, Khong Danika M, Siatskas C, Gray Daniel HD, Boyd Richard L, Chidgey AP (2014) Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep 8(4):1198–1209PubMedCrossRefGoogle Scholar
  188. Youm YH, Yang H, Sun Y, Smith RG, Manley NR, Vandanmagsar B, Dixit VD (2009) Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J Biol Chem 284(11):7068–7077PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yu VWC, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang Y-H, Lymperi S, Ferraro F, Raaijmakers MHGP, Wu JY, Zhou L, Rajagopal J, Kronenberg HM, Baron R, Scadden DT (2015) Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 212(5):759–774PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zakrzewski JL, Kochman AA, Lu SX, Terwey TH, Kim TD, Hubbard VM, Muriglan SJ, Suh D, Smith OM, Grubin J, Patel N, Chow A, Cabrera-Perez J, Radhakrishnan R, Diab A, Perales MA, Rizzuto G, Menet E, Pamer EG, Heller G, Zuniga-Pflucker JC, Alpdogan O, van den Brink MR (2006) Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med 12(9):1039–1047PubMedCrossRefGoogle Scholar
  191. Zakrzewski JL, Suh D, Markley JC, Smith OM, King C, Goldberg GL, Jenq R, Holland AM, Grubin J, Cabrera-Perez J, Brentjens RJ, Lu SX, Rizzuto G, Sant’Angelo DB, Riviere I, Sadelain M, Heller G, Zuniga-Pflucker JC, Lu C, van den Brink MR (2008) Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol 26(4):453–461PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhang SL, Wang X, Manna S, Zlotoff DA, Bryson JL, Blazar BR, Bhandoola A (2014) Chemokine treatment rescues profound T-lineage progenitor homing defect after bone marrow transplant conditioning in mice. Blood 124(2):296–304PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zlotoff DA, Zhang SL, De Obaldia ME, Hess PR, Todd SP, Logan TD, Bhandoola A (2011) Delivery of progenitors to the thymus limits T-lineage reconstitution after bone marrow transplantation. Blood 118(7):1962–1970PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zoller AL, Kersh GJ (2006) Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of beta-selected thymocytes. J Immunol 176(12):7371–7378PubMedCrossRefGoogle Scholar
  195. Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB, Witte PL, Le PT (2011) Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 118(22):5723–5731PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, Barthlott T, Ponting CP, Hollander GA (2016) Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17(10):1206–1215PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jarrod Dudakov
    • 1
  • Michael L. Hun
    • 2
  • Kahlia Wong
    • 2
  • Georg Holländer
    • 3
    • 4
  • Ann P. Chidgey
    • 2
    Email author
  1. 1.Program in Immunology, Clinical Research Division, and Immunotherapy Integrated Research CenterFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Anatomy and Developmental Biology, Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
  3. 3.Department of Paediatrics and the Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
  4. 4.MRC Functional Genomics Unit, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations