Advertisement

GPS Trajectory Compression Algorithm

  • Gary Reyes ZambranoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 959)

Abstract

This research is oriented toward the development of a trajectory compression algorithm for global positioning systems. In order to increase the compression ratio of the data, an algorithm is developed based on the algorithm of compression of GPS trajectories Top Down - Time Ratio. The algorithm is composed of a filter for noise reduction and makes use of semantic information to accept or discard relevant points of the trajectory. The experiments of the algorithm were carried out using three trajectory datasets: Mobile Century Data, Geolife Trajectories and T-Drive Data, increasing the compression ratio of the data, which leads to improvements in efficiency. With the results obtained, statistical tests were performed that allowed us to compare the results, compare it with other trajectory compression algorithms and validate the investigation.

Keywords

Compression GPS data analysis GPS data simplification 

References

  1. 1.
    Chen, M., Xu, M., Fränti, P.: A fast O(N) multi-resolution polygonal approximation algorithm for GPS trajectory simplification. IEEE Trans. Image Process. 1–14 (2012)Google Scholar
  2. 2.
    Wang, T.: An online data compression algorithm for trajectories. Int. J. Inf. Educ. Technol. 3(4), 480–487 (2013)Google Scholar
  3. 3.
    Stacchini, J.C., Lessa, T., Pal, B.: Data compression in smart distribution systems via singular value decomposition. IEEE Trans. Smart Grid 8(1), 275–284 (2017)CrossRefGoogle Scholar
  4. 4.
    Corcoran, P., Mooney, P., Huang, G.: Unsupervised trajectory compression. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3126–3132 (2016)Google Scholar
  5. 5.
    Ji, Y., Liu, H., Liu, X., Ding, Y., Luo, W.: A comparison of road-network-constrained trajectory compression methods. In: IEEE 22nd International Conference on Parallel and Distributed Systems (2016)Google Scholar
  6. 6.
    Muckell, J., Olsen, P.W., Lawson, C., Ravi, S., Hwang, J.: Compression of trajectory data: a comprehensive evaluation and new approach. Geoinformatica 2014, 435–460 (2014)CrossRefGoogle Scholar
  7. 7.
    Salomon, D.: Data Compression, 4th edn. Springer, London (2007).  https://doi.org/10.1007/978-1-84628-603-2CrossRefzbMATHGoogle Scholar
  8. 8.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. Comput. Geom. Theory Appl. 42(9), 825–841 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lv, C., Chen, F., Xu, Y., Song, J., Lv, P.: A trajectory compression algorithm based on non-uniform quantization. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2469–2474 (2015)Google Scholar
  10. 10.
    Van Hunnik, R.: Extensive comparison of trajectory simplification algorithms. University Utrecht (2017)Google Scholar
  11. 11.
    Asif, M.T., Kannan, S., Dauwels, J., Jaillet, P.: Data compression techniques for urban traffic data. In: 2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS), pp. 4–9 (2013)Google Scholar
  12. 12.
    Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24741-8_44CrossRefGoogle Scholar
  13. 13.
    Lawson, C., Ravi, S., Hwang, J.-H.: Compression and mining of GPS trace data: new techniques and applications, New York (2011)Google Scholar
  14. 14.
    Zhilin, L.: An algorithm for compressing digital contour data. Cartogr. J. 25, 143–146 (1998)Google Scholar
  15. 15.
    Rhind, D.W.: Generalisation and realism within automated cartographic systems. Can. Cartogr. 10(1), 51–62 (1973)CrossRefGoogle Scholar
  16. 16.
    McMaster, R., Shea, K.S.: Generalization in Digital Cartography. Association of American Geographers, Washington, D.C. (1992)Google Scholar
  17. 17.
    Sim, M., Kwak, J.-H., Lee, C.-H.: Fast shape matching algorithm based on the improved Douglas-Peucker algorithm. KIPS Trans. Softw. Data Eng. 5(10), 497–502 (2016)CrossRefGoogle Scholar
  18. 18.
    Wu, S., Silva, A.C.G., Márquez, M.R.G.: The Douglas-Peucker algorithm: sufficiency conditions for non-self-intersections. J. Brazilian Comput. Soc. 9, 1–17 (2004)CrossRefGoogle Scholar
  19. 19.
    Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J.: One-pass error bounded trajectory simplification. In: 43rd International Conference on Very Large Data Bases (VLDB), pp. 841–852 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, H.: SharkDB : an in-memory storage system for large scale trajectory data management. The University of Queensland (2016)Google Scholar
  21. 21.
    Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of the smallest area. Cartographic Information Systems Research Group, July 1992Google Scholar
  22. 22.
    Koegel, M., Mauve, M., Baselt, D., Scheuermann, B.: A comparison of vehicular trajectory encoding techniques. In: The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop, pp. 87–94 (2011)Google Scholar
  23. 23.
    Zhang, S., Liu, Z., Cai, Y., Wu, Z., Shi, G.: AIS trajectories simplification and threshold determination. J. Navig. 2016, 729–744 (2016)CrossRefGoogle Scholar
  24. 24.
    Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm (1992)Google Scholar
  25. 25.
    Bianco, J.: Estudio y aplicación de Filtros de Kalman sobre sistemas de posicionamiento global para el suavizado de trayectorias geoposicionadas. Universidad Nacional de Córdoba (2013)Google Scholar
  26. 26.
    Cegan, L.: Empirical study on effects of compression algorithms in web environment. J. Telecommun. Electron. Comput. Eng. 9(2), 69–72 (2017)Google Scholar
  27. 27.
    Alakuijala, J., Kliuchnikov, E., Szabadka, Z., Vandevenne, L.: Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2 compression algorithms (2015)Google Scholar
  28. 28.
    Matejek, B., Haehn, D., Lekschas, F., Mitzenmacher, M., Pfister, H.: Compresso: efficient compression of segmentation data for connectomics. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 781–788. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66182-7_89CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ecuador Facultad de Ciencias Matemáticas y FísicasUniversity of GuayaquilGuayaquilEcuador

Personalised recommendations