Biomechanics of the Hip During Gait

  • Morgan Sangeux


Pathologies of the hip affect its biomechanics and vice versa. There is a strong relationship between the shape and orientation of the proximal femur and acetabulum, and the capacity of the hip muscles to generate the moment required to achieve a movement. Conversely, the biomechanics of the musculoskeletal system during gait affects the kinematics, kinetics and joint contact forces at the hip. When abnormal, these forces may lead to the development of hip pathologies. In this chapter, the functional anatomy of the hip and the relationship between bone shape and the capacity of the muscles to develop moments in each anatomical plane, is described. Clinical gait analysis is introduced as a means to study the biomechanics of the hip in detail, and describe the kinematics, kinetics and joint contact forces of typically developing children and adolescents.


Hip Biomechanics Muscle lever arm Joint contact force Gait 



I am grateful for the work of the teams behind the free and open-source software 3DSlicer and OpenSim [12, 14], which allowed me to produce many of the simulations and illustrations in this chapter.


  1. 1.
    Ackland DC, Lin YC, Pandy MG. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech. 2012;45(8):1463–71.CrossRefGoogle Scholar
  2. 2.
    Albers CE, Schwarz A, Hanke MS, Kienle KP, Werlen S, Siebenrock KA. Acetabular version increases after closure of the triradiate cartilage complex. Clin Orthop Relat Res. 2017;475(4):983–94.CrossRefGoogle Scholar
  3. 3.
    Arnold AS, Komattu AV, Delp SL. Internal rotation gait: a compensatory mechanism to restore abduction capacity decreased by bone deformity? Dev Med Child Neurol. 1997;39(1):40–4.CrossRefGoogle Scholar
  4. 4.
    Bache C, Selber P, Graham H. The management of spastic diplegia. Curr Orthop. 2003;17:88–104.CrossRefGoogle Scholar
  5. 5.
    Baker R. Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical understanding of the terms. Gait Posture. 2001;13(1):1–6.CrossRefGoogle Scholar
  6. 6.
    Baker R, Leboeuf F, Reay J, Sangeux M. The Conventional Gait Model - Success and Limitations. In: Müller B, Wolf SI, Brueggemann G-P, Deng Z, McIntosh A, Miller F, et al., editors. Handbook of Human Motion. Cham: Springer International Publishing; 2017. p. 1–19.Google Scholar
  7. 7.
    Bell AL, Pedersen DR, Brand RA. A comparison of the accuracy of several hip center location prediction methods. J Biomech. 1990;23(6):617–21.CrossRefGoogle Scholar
  8. 8.
    Bergmann G, Bender A, Dymke J, Duda G, Damm P. Standardized loads acting in hip implants. PLoS One. 2016;11(5):e0155612.CrossRefGoogle Scholar
  9. 9.
    Boese CK, Dargel J, Oppermann J, Eysel P, Scheyerer MJ, Bredow J, Lechler P. The femoral neck-shaft angle on plain radiographs: a systematic review. Skeletal Radiol. 2016;45(1):19–28.CrossRefGoogle Scholar
  10. 10.
    Botser IB, Ozoude GC, Martin DE, Siddiqi AJ, Kuppuswami S, Domb BG. Femoral anteversion in the hip: comparison of measurement by computed tomography, magnetic resonance imaging, and physical examination. Arthroscopy. 2012;28(5):619–27.CrossRefGoogle Scholar
  11. 11.
    Bsat S, Frei H, Beaule PE. The acetabular labrum: a review of its function. Bone Joint J. 2016;98-B(6):730–5.CrossRefGoogle Scholar
  12. 12.
    Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50.CrossRefGoogle Scholar
  13. 13.
    Delp SL, Zajac FE. Force-generating and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop Relat Res. 1992;(284):247–59.Google Scholar
  14. 14.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.CrossRefGoogle Scholar
  15. 15.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D’Lima DD, Lloyd DG. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech. 2013;46(16):2778–86.CrossRefGoogle Scholar
  16. 16.
    Gilligan I, Chandraphak S, Mahakkanukrauh P. Femoral neck-shaft angle in humans: variation relating to climate, clothing, lifestyle, sex, age and side. J Anat. 2013;223(2):133–51.CrossRefGoogle Scholar
  17. 17.
    Hara R, McGinley J, Briggs C, Baker R, Sangeux M. Predicting the location of the hip joint centres, impact of age group and sex. Sci Rep. 2016;6:37707.CrossRefGoogle Scholar
  18. 18.
    Harrington ME, Zavatsky AB, Lawson SEM, Yuan Z, Theologis TN. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech. 2007;40(3):595–602.CrossRefGoogle Scholar
  19. 19.
    Higgins SW, Spratley EM, Boe RA, Hayes CW, Jiranek WA, Wayne JS. A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects. J Bone Jt Surg Am. 2014;96(21):1776–84.CrossRefGoogle Scholar
  20. 20.
    Hingsammer AM, Bixby S, Zurakowski D, Yen YM, Kim YJ. How do acetabular version and femoral head coverage change with skeletal maturity? Clin Orthop Relat Res. 2015;473(4):1224–33.CrossRefGoogle Scholar
  21. 21.
    Jacquemier M, Glard Y, Pomero V, Viehweger E, Jouve JL, Bollini G. Rotational profile of the lower limb in 1319 healthy children. Gait Posture. 2008;28(2):187–93.CrossRefGoogle Scholar
  22. 22.
    Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech (Bristol, Avon). 2015;30:319.CrossRefGoogle Scholar
  23. 23.
    Koerner JD, Patel NM, Yoon RS, Sirkin MS, Reilly MC, Liporace FA. Femoral version of the general population: does “normal” vary by gender or ethnicity? J Orthop Trauma. 2013;27(6):308–11.CrossRefGoogle Scholar
  24. 24.
    Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S. Validation of a functional method for the estimation of hip joint center location. J Biomech. 1999;32:99–103.CrossRefGoogle Scholar
  25. 25.
    Lewis CL, Laudicina NM, Khuu A, Loverro KL. The human pelvis: variation in structure and function during gait. Anat Rec (Hoboken). 2017;300(4):633–42.CrossRefGoogle Scholar
  26. 26.
    Myers CA, Register BC, Lertwanich P, Ejnisman L, Pennington WW, Giphart JE, LaPrade RF, Philippon MJ. Role of the acetabular labrum and the iliofemoral ligament in hip stability: an in vitro biplane fluoroscopy study. Am J Sports Med. 2011;39(Suppl):85S–91S.CrossRefGoogle Scholar
  27. 27.
    Pandy MG, Andriacchi TP. Muscle and joint function in human locomotion. Annu Rev Biomed Eng. 2010;12:401–33.CrossRefGoogle Scholar
  28. 28.
    Passmore E, Graham HK, Pandy M, Sangeux M. The effect of femoral and tibial torsion on muscle and joint function during walking in typically developing children. Gait Posture. 2016a;49:41.Google Scholar
  29. 29.
    Passmore E, Pandy M, Graham HK, Sangeux M. What is the respective effect of joint position and bone shape on clinical musculoskeletal modelling? An EOS study. Gait Posture. 2016b;49(Suppl 2):26.Google Scholar
  30. 30.
    Perry J. Gait analysis normal and pathological function. Thorofare, NJ: SLACK Incorporated; 1992.Google Scholar
  31. 31.
    Robin J, Graham HK, Selber P, Dobson F, Smith K, Baker R. Proximal femoral geometry in cerebral palsy: a population-based cross-sectional study. J Bone Jt Surg B. 2008;90(10):1372–9.CrossRefGoogle Scholar
  32. 32.
    Sangeux M. On the implementation of predictive methods to locate the hip joint centres. Gait Posture. 2015;42(3):402–5.CrossRefGoogle Scholar
  33. 33.
    Sangeux M, Armand S. In: Canavese F, Deslandes J, editors. Kinematic deviations in children with cerebral palsy orthopedic management of children with cerebral palsy: a comprehensive approach. New York, NY: Nova Science Publishers; 2015.Google Scholar
  34. 34.
    Sangeux M, Mahy J, Graham HK. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other? Gait Posture. 2014a;39(1):12–6.CrossRefGoogle Scholar
  35. 35.
    Sangeux M, Marin F, Charleux F, Ho Ba Tho MC. In vivo mechanical properties of the anterior cruciate ligament. Comput Methods Biomech Biomed Engin. 2007;10(suppl):35–6.CrossRefGoogle Scholar
  36. 36.
    Sangeux M, Pascoe J, Graham HK, Ramanauskas F, Cain T. Three-dimensional measurement of femoral neck anteversion and neck shaft angle. J Comput Assist Tomogr. 2015a;39(1):83–5.CrossRefGoogle Scholar
  37. 37.
    Sangeux M, Passmore E, Gomez G, Balakumar J, Graham HK. Slipped capital femoral epiphysis, fixation by single screw in situ: a kinematic and radiographic study. Clin Biomech (Bristol, Avon). 2014b;29(5):523–30.CrossRefGoogle Scholar
  38. 38.
    Sangeux M, Passmore E, Graham HK, Tirosh O. The gait standard deviation, a single measure of kinematic variability. Gait Posture. 2016;46:194–200.CrossRefGoogle Scholar
  39. 39.
    Sangeux M, Peters A, Baker R. Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture. 2011;34(3):324–8.CrossRefGoogle Scholar
  40. 40.
    Sangeux M, Pillet H, Skalli W. Which method of hip joint centre localisation should be used in gait analysis? Gait Posture. 2014c;40(1):20–5.CrossRefGoogle Scholar
  41. 41.
    Sangeux M, Rodda J, Graham HK. Sagittal gait patterns in cerebral palsy: the plantarflexor-knee extension couple index. Gait Posture. 2015b;41(2):586–91.CrossRefGoogle Scholar
  42. 42.
    Schwartz MH, Rozumalski A, Novacheck TF. Femoral derotational osteotomy: surgical indications and outcomes in children with cerebral palsy. Gait Posture. 2014;39(2):778–83.CrossRefGoogle Scholar
  43. 43.
    Staheli LT, Corbett M, Wyss C, King H. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985;67(1):39–47.CrossRefGoogle Scholar
  44. 44.
    Sutherland DH, Olshen R. The development of mature walking. London: Mac Keith Press; 1988.Google Scholar
  45. 45.
    Szuper K, Schlegl AT, Leidecker E, Vermes C, Somoskeoy S, Than P. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr Radiol. 2015;45(3):411–21.CrossRefGoogle Scholar
  46. 46.
    Tayton E. Femoral anteversion. J Bone Jt Surg B. 2007;89(10):1283–8.CrossRefGoogle Scholar
  47. 47.
    Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. J Biomech. 2003;36(3):321–8.CrossRefGoogle Scholar
  48. 48.
    Tirosh O, Sangeux M, Wong M, Thomason P, Graham HK. Walking speed effects on the lower limb electromyographic variability of healthy children aged 7-16 years. J Electromyogr Kinesiol. 2013;23(6):1451–9.CrossRefGoogle Scholar
  49. 49.
    van Arkel RJ, Amis AA, Jeffers JR. The envelope of passive motion allowed by the capsular ligaments of the hip. J Biomech. 2015;48(14):3803–9.CrossRefGoogle Scholar
  50. 50.
    Zhang H, Wang Y, Ai S, Chen X, Wang L, Dai K. Three-dimensional acetabular orientation measurement in a reliable coordinate system among one hundred Chinese. PLoS One. 2017;12(2):e0172297.CrossRefGoogle Scholar
  51. 51.
    Adam P, Beguin L, Grosclaude S, Jobard B, Fessy MH. Functional range of motion of the hip joint. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(4):382–91.CrossRefGoogle Scholar
  52. 52.
    Baker R. Globographic visualisation of three dimensional joint angles. J Biomech. 2011;44(10):1885–91.CrossRefGoogle Scholar
  53. 53.
    Delp SL, Hess WE, Hungerford DS, Jones LC. Variation of rotation moment arms with hip flexion. J Biomech. 1999;32(5):493–501.CrossRefGoogle Scholar
  54. 54.
    Hara D, Nakashima Y, Hamai S, Higaki H, Ikebe S, Shimoto T, Hirata M, Kanazawa M, Kohno Y, Iwamoto Y. Kinematic analysis of healthy hips during weight-bearing activities by 3D-to-2D model-to-image registration technique. Biomed Res Int. 2014;2014:457573.CrossRefGoogle Scholar
  55. 55.
    Reese NB, Bandy WD. Joint range of motion and muscle length testing. London: Elsevier Health Science; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Morgan Sangeux
    • 1
    • 2
    • 3
    • 4
  1. 1.The Royal Children’s HospitalMelbourneAustralia
  2. 2.The Murdoch Children’s Research InstituteMelbourneAustralia
  3. 3.The University of MelbourneMelbourneAustralia
  4. 4.Biomech-IntelMarseilleFrance

Personalised recommendations