Advertisement

Electro-Photonic Chip-Scale Microsystem for Label-Free Single Bacteria Monitoring

  • Francesco Dell’Olio
  • Donato Conteduca
  • Michele Cito
  • Giuseppe Brunetti
  • Caterina CiminelliEmail author
  • Thomas F. Krauss
  • Mario N. Armenise
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Monitoring of bacteria metabolism/viability at single level during the antibiotics action is a crucial functionality for systems supporting the development of new drugs able to kill bacteria resistant to all or nearly all antibiotics currently available. In this paper, we report on an electro-photonic chip-scale microsystem including an array of photonic nanocavities each able to trap a single bacterium. By monitoring the spectral response of the nanophotonic cavities and the electrical impedance across the trapping sites, a detailed knowledge of the metabolic state of trapped bacteria can be obtained. By three-dimensional simulations based on the finite element method, we predict a high electrical detection resolution of the microsystem, with a current variation of a factor 12 between dead and live bacteria.

References

  1. 1.
    Estevez, M., Alvarez, M., Lechuga, L.: Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012)CrossRefGoogle Scholar
  2. 2.
    Ciminelli, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Labelfree optical resonant sensors for biochemical applications. Prog. Quantum Electron. 37, 51–107 (2013)CrossRefGoogle Scholar
  3. 3.
    Fernández Gavela, A., Grajales García, D., Ramirez, J.C., Lechuga, L.M.: Last advances in silicon-based optical biosensors. Sensors 16, 285 (2016)CrossRefGoogle Scholar
  4. 4.
    Ciminelli, C., Dell’Olio, F., Conteduca, D., Campanella, C.M., Armenise, M.N.: High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 59, 60–67 (2014)CrossRefGoogle Scholar
  5. 5.
    Dell’Olio, F., Conteduca, D., Ciminelli, C., Armenise, M.N.: New ultrasensitive resonant photonic platform for label-free biosensing. Opt. Express 23, 28593–28604 (2015)CrossRefGoogle Scholar
  6. 6.
    Dell’Olio, F., Conteduca, D., De Palo, M., Ciminelli, C.: Design of a new ultracompact resonant plasmonic multi-analyte label-free biosensing platform. Sensors 17, 1810 (2017)CrossRefGoogle Scholar
  7. 7.
    Prestinaci, F., Pezzotti, P., Pantosti, A.: Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318 (2015)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Jasovsky, D., Littmann, J., Zorzet, A., Cars, O.: Antimicrobial resistance – a threat to the world’s sustainable development. Upsala J. Med. Sci. 121, 159–164 (2016)CrossRefGoogle Scholar
  10. 10.
    Dickson, R.P., Singer, B.H., Newstead, M.W., Falkowski, N.R., Erb-Downward, J.R., Standiford, T.J., Huffnagle, G.B.: Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016)CrossRefGoogle Scholar
  11. 11.
    Khan, M.M.T., Pyle, B.H., Camper, A.K.: Specific and rapid enumeration of viable but nonculturable and viable- culturable gram-negative bacteria by using flow cytometry. Appl. Environ. Microbiol. 76, 5088–5096 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhou, H., Yang, D., Ivleva, N.P., Mircescu, N.E., Schubert, S., Niessner, R., Wieser, A., Haisch, C.: Label-free in situ discrimination of live and dead bacteria by surface enhanced Raman scattering. Anal. Chem. 87, 6553–6561 (2015)CrossRefGoogle Scholar
  13. 13.
    Yang, L., Li, Y., Griffis, C.L., Johnson, M.G.: Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19, 1139–1147 (2004)CrossRefGoogle Scholar
  14. 14.
    Safavieh, M., Pandya, H.J., Venkataraman, M., Thirumalaraju, P., Kanakasabapathy, M.K., Singh, A., Prabhakar, D., Chug, M.K., Shafiee, H.: Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microphotonics with printed electrodes. Appl. Mater. Interfaces 9, 12832–12840 (2017)CrossRefGoogle Scholar
  15. 15.
    Conteduca, D., Dell’Olio, F., Brunetti, G., Krauss, T.F., Ciminelli, C., Armenise, M.N.: High-efficiency optoelectronic system for monitoring of antimicrobial resistance (AMR) in bacteria. In: 20th Italian National Conference on Photonic Technologies (Fotonica 2018), Lecce, Italy (2018)Google Scholar
  16. 16.
    Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a twodimensional photonic crystal. Nature 425, 944–947 (2003)CrossRefGoogle Scholar
  17. 17.
    Portalupi, L., Galli, M., Reardon, C., Krauss, T.F., O’Faolain, L., Andreani, L.C., Gerace, D.: Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Opt. Express 18, 16064–16073 (2010)CrossRefGoogle Scholar
  18. 18.
    Galli, M., Portalupi, S.L., Belotti, M., Andreani, L.C., O’Faolain, L., Krauss, T.F.: Light scattering and fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett. 94, 071101 (2009)CrossRefGoogle Scholar
  19. 19.
    Terisod, R., Tardif, M., Marcoux, P. R., Picard, E., Hadji, E., Peyrade, D., Houdrè, R.: Optical trapping of living bacteria in 2D hollow photonic crystal cavities. In: Conference on Laser and Electro-optics (CLEO 2018), San Jose, California, USA (2018)Google Scholar
  20. 20.
    Delcour, A.H.: Outer membrane permeability and antibiotic resistance. Bioch. et Biophys. Acta 1794, 808–816 (2009)CrossRefGoogle Scholar
  21. 21.
    Liu, P.Y., Chin, K., Ser, W., Ayi, T.C., Yap, P.H., Bourouina, T., Leprince-Wang, Y.: Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry. Procedia Eng. 87, 356–359 (2014)CrossRefGoogle Scholar
  22. 22.
    Bai, W., Zhao, K.S., Asami, K.: Dielectric properties of E.coli cell as simulated by the three shell spheroidal model. Biophys. Chem. 122, 136–142 (2006)CrossRefGoogle Scholar
  23. 23.
    Conteduca, D., Reardon, C., Scullion, M.G., Dell’Olio, F., Armenise, M.N., Krauss, T.F., Ciminelli, C.: Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics 2, 086101 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Dell’Olio
    • 1
  • Donato Conteduca
    • 1
    • 2
  • Michele Cito
    • 1
  • Giuseppe Brunetti
    • 1
  • Caterina Ciminelli
    • 1
    Email author
  • Thomas F. Krauss
    • 2
  • Mario N. Armenise
    • 1
  1. 1.Optoelectronics LaboratoryPolitecnico Di BariBariItaly
  2. 2.Photonics Group, Department of PhysicsUniversity of YorkYorkUK

Personalised recommendations