Advertisement

Ultrasound Measurement of the Peak Blood Flow Based on a Doppler Spectrum Model

  • Riccardo MateraEmail author
  • David Vilkomerson
  • Stefano Ricci
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Doppler ultrasound techniques play an important role in the investigation of blood flow and, in recent decades, have become standards in cardiovascular medicine. In current clinical practice, an arterial stenosis is evaluated from the maximum blood velocity measured in an echo-Doppler investigation. Unfortunately, the blood Doppler signal produces a relative wide Doppler spectrum, and it is not trivial to detect the exact frequency that corresponds to the maximum velocity through the Doppler formula. The measurement is thus affected by high inaccuracies. In this work, a method based on a mathematical model of the Doppler spectrum is proposed to detect the frequency that corresponds to the maximum velocity. The method has been implemented in a custom electronics system and validated through experiments on a flow phantom. Experiments with flows between 100 and 300 mL/min (peak velocity range 6.6–19.9 cm/s) resulted in a bias lower t han 1% and a standard deviation 4%.

References

  1. 1.
    Grant, E., Benson, C., Moneta, G., Alexandrov, A., Baker, J., Bluth E., et al.: Carotid artery stenosis: gray-scale and doppler US diagnosis. Radiology 229(2), 340–346 (2003)CrossRefGoogle Scholar
  2. 2.
    Evans, D., McDicken, W.: Doppler Ultrasound: Physics, Instrumentation and Signal Processing. Wiley, Chichester (2000)Google Scholar
  3. 3.
    Tortoli, P., Guidi, G., Newhouse, V.: Improved blood velocity estimation using the maximum doppler frequency. Ultrasound Med. Biol. 21(4), 527–532 (1995).  https://doi.org/10.1016/0301-5629(94)00137-3CrossRefGoogle Scholar
  4. 4.
    Steinman, A.H., Tavakkoli, J., Myers, J.G., Cobbold, R.S., Johnston, K.W.: Sources of error in maximum velocity estimation using linear phased-array doppler systems with steady flow. Ultrasound Med. Biol. 27(5), 655–664 (2001).  https://doi.org/10.1016/S0301-5629(01)00352-0CrossRefGoogle Scholar
  5. 5.
    Marasek, K., Nowicki, A.: Comparison of the performance of three maximum doppler frequency estimators coupled with different spectral estimation methods. Ultrasound Med. Biol. 20(7), 629–638 (1994).  https://doi.org/10.1016/0301-5629(94)90111-2CrossRefGoogle Scholar
  6. 6.
    Vilkomerson, D., Ricci, S., Tortoli, P.: Finding the peak velocity in a flow from its doppler spectrum. IEEE Trans. Ultrason. Ferroelect. Freq. Control 60(10), 2079–2088 (2013).  https://doi.org/10.1109/tuffc.2013.2798CrossRefGoogle Scholar
  7. 7.
    Ricci, S.: An analytical model of the doppler spectrum for peak blood velocity detection. In: IEEE Ultrasonics Symposium Proceedings, pp. 2241–2244. Chicago (IL) (2014).  https://doi.org/10.1109/ultsym.2014.0558
  8. 8.
    Ricci, S., Liard, M., Birkhofer, B., Lootens, D., Brühwiler, A., Tortoli, P.: Embedded doppler system for industrial in-line rheometry. IEEE Trans. Ultrason. Ferroelect. Freq. Control 59(7), 1395–1401 (2012).  https://doi.org/10.1109/tuffc.2012.2340CrossRefGoogle Scholar
  9. 9.
    Ricci, S., Matera, R., Tortoli, P.: An improved doppler model for obtaining accurate maximum blood velocities. Ultrasonics 54(7), 2006–2014 (2014).  https://doi.org/10.1016/j.ultras.2014.05.012CrossRefGoogle Scholar
  10. 10.
    Ricci, S., Vilkomerson, D., Matera, R., Tortoli, P.: Accurate blood peak velocity estimation using spectral models and vector doppler. IEEE Trans. Ultrason. Ferroelect. Freq. Control 62(4), 686–696 (2015).  https://doi.org/10.1109/tuffc.2015.006982CrossRefGoogle Scholar
  11. 11.
    Ricci, S., Swillens, A., Ramalli, A., Segers, P., Tortoli, P.: Wall shear rate measurement: validation of a new method through multi-physics simulations. IEEE Trans. Ultrason. Ferroelect. Freq. Control 64(1), 66–77 (2017).  https://doi.org/10.1109/tuffc.2016.2608442CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Riccardo Matera
    • 1
    Email author
  • David Vilkomerson
    • 2
  • Stefano Ricci
    • 1
  1. 1.Department of Information EngineeringUniversity of FlorenceFlorenceItaly
  2. 2.DVX LLCPrincetonUSA

Personalised recommendations