Advertisement

Radiation Hardness by Design Techniques for 1 Grad TID Rad-Hard Systems in 65 nm Standard CMOS Technologies

  • Gabriele CiarpiEmail author
  • Sergio Saponara
  • Guido Magazzù
  • Fabrizio Palla
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

The paper shows the radiation effects on 65 nm standard CMOS technology and RHBD (Radiation Hardening By Design) techniques developed to reduce the mosfets performance degradation. The paper is focused on the techniques to address extremely high Total Ionization Dose (TID) up to 1 Grad, which is the level required for the planned upgrade of the CERN’s LHC (HL-LHC). Today, only few data of single mosfets measurement at 1 Grad are presented in literature. These data are collected and transistors models are developed to presents, in this paper, the first system simulation results at 1 Grad conditions. As case of study, the performance reduction of two full-custom D flip-flops are presented, highlighting the robustness against radiation of CML technology for high-speed applications (10 Gbps).

References

  1. 1.
    Hadda, N.F., et al.: Incremental enhancement to SEU hardened 90 nm CMOS memory cell. In: Proceeding of RADECS 2010 (2010)Google Scholar
  2. 2.
    Clark, L., et al.: Optimizing radiation hard by design SRAM cells. IEEE Trans. Nucl. Sci. 54(6), 2028–2036 (2007)CrossRefGoogle Scholar
  3. 3.
    Lv, H., Sun, Y., et al.: Research on optimization design of radiation dose shield hardening for aerospace components. In: IEEE PHM-Harbin (2017)Google Scholar
  4. 4.
    Garcia, R., Brugger, M., et al.: Simplified SEE sensitivity screening for COTS components in space. IEEE Trans. Nucl. Sci. 64(2) (2017)Google Scholar
  5. 5.
    Sielewicz, K.M., Rinella, G.A., et al.: Experimental methods and results for the evaluation of triple modular redundancy SEU mitigation techniques with Xilinx Kintex-7 FPGA. In: IEEE Radiation Effects Data Workshop (REDW) (2017)Google Scholar
  6. 6.
    Sinclair, D., Dyer, J., Radiation effects and COTS parts in small SmallSats. In: SSC13, AIAA/UtahGoogle Scholar
  7. 7.
    Butler, J., et al.: Technical proposal for the phase-II upgrade of the CMS detector. In: CERN-LHCC-2015-010Google Scholar
  8. 8.
    Magazzù, G., Ciarpi, G., et al.: Design of a radiation-tolerant high-speed driver for Mach Zender modulators in high energy physics. In: IEEE ISCAS (2018)Google Scholar
  9. 9.
    Paternò, A., Pacher, L., et al.: New development on digital architecture for efficient pixel readout ASIC at extreme hit rate for HEP detectors at HL-LHC. In: IEEE NSS/MIC/RTSD (2016)Google Scholar
  10. 10.
    Saks, N.S., Ancona, M.G., et al.: Radiation effects in MOS capacitors with very thin oxides at 80 °K. IEEE Trans. Nucl. Sci. 31(6) (1984)CrossRefGoogle Scholar
  11. 11.
    Faccio, F., Michelis, S., et al.: Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm Mosfets. IEEE Trans. Nucl. Sci. 62(6) (2015)CrossRefGoogle Scholar
  12. 12.
    Anelli, G., Campbell, M., et al.: Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects. IEEE Trans. Nucl. Sci. 46(6) (1999)CrossRefGoogle Scholar
  13. 13.
    Faccio, F., Borghello, G., et al.: Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65 nm Mosfets irradiated to ultra-high doses. IEEE Trans. Nucl. Sci. 65(1) (2018)CrossRefGoogle Scholar
  14. 14.
    Menouni, M., Barbero, M., et al.: 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades. J. Instrum. 10 (2015)CrossRefGoogle Scholar
  15. 15.
    Ding, L., Geranrdin, S., et al.: Drain current collapse in 65 nm PMOS transistors after exposure to grad dose. IEEE Trans. Nucl. Sci. 62(6) (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gabriele Ciarpi
    • 1
    • 2
    Email author
  • Sergio Saponara
    • 1
  • Guido Magazzù
    • 2
  • Fabrizio Palla
    • 2
  1. 1.Dip. Ingegneria dell’InformazioneUniversity of PisaPisaItaly
  2. 2.INFN, Sezione di PisaPisaItaly

Personalised recommendations