Advertisement

Twiddle Factor Generation Using Chebyshev Polynomials and HDL for Frequency Domain Beamforming

  • Ghattas AkkadEmail author
  • Ali Mansour
  • Bachar ElHassan
  • Frederic Le Roy
  • Mohamad Najem
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Twiddle factor generation is considered a computationally intensive task in generic length, high resolution, FFT operations. In order to accelerate twiddle factor generation, we propose a reconfigurable hardware architecture based on Chebyshev polynomial expansion for computing the cosine and sine trigonometric functions under finite precision arithmetic. We show that our approach presents a flexible 3 decimal digits precision output for variable length FFT operations, since the same design space can be used for any power of 2 FFT length. In particular, this study focuses on communication systems incorporating frequency domain beamforming algorithms for single and multi-beams. The proposed architecture is competitive with classical designs i.e. Coordinate Rotation Digital Computer, CORDIC and Taylor Series by providing low latency, high precision twiddle factors for variable length FFT.

Keywords

FFT FPGA Accelerated computing VHDL Beamforming Twiddle factor Chebyshev Frequency domain 

References

  1. 1.
    Hamid, U., Qamar, R.A., Waqas, K.: Performance Comparison of time domain and frequency domain beamforming techniques for sensor array processing, In: Proceedings of 2014 11th International Conference on Applied Sciences & Technology (IBCAST). Islamabad, Pakistan (2014)Google Scholar
  2. 2.
    Allen, B., Ghavami, M.: Adaptive Array Systems Fundamentals and Applications. Wiley (2005)Google Scholar
  3. 3.
    Navaro, R.: Frequency domain beamforming for a deep space network downlink array. In: Aerospace Conference, Big Sky. MT, USA (2012)Google Scholar
  4. 4.
    Nadal, A.B.J., Abdel Nour, C., Lin, H.: Hardware prototyping of FBMC/OQAM base-band for 5G mobile communication systems. In: IEEE International Symposium on Rapid System Prototyping, New Delhi, India, pp. 135–141 (2014)Google Scholar
  5. 5.
    Dali, M., Gibson, R., Amira, A., Guessoum, A., Ramzan, N.: An efficient MIMO-OFDM radix-2 single-path delay feedback FFT implementation on FPGA. In: NASA/ESA Conference on Adaptive Hardware and Systems (2015)Google Scholar
  6. 6.
    Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. Springer (2014)Google Scholar
  7. 7.
    Garrido, M.: A new representation of FFT algorithms using triangular matrices. In: IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1737–1745 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hung, C.H., Chen, S.G., Chen, K.L.: Design of an efficient variable length FFT processor. In: Proceedings of the International Symposium on Circuits and Systems, pp. 833–836 (2004)Google Scholar
  9. 9.
    Lucius, G., Le Roy, F., Aulagnier, D., Azou, S.: An algorithm for external eigenvectors computation of Hermitian matrices and its FPGA implementation. In: IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1407–1410 (2013)Google Scholar
  10. 10.
    Nane, R., Sima, V.M., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y.T., Hsiao, H., Brown, S., Ferrandi, F., Anderson, J., Bertels, K.: A survey and evaluation of FPGA high-level synthesis tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(10), 1591–1604 (2016)CrossRefGoogle Scholar
  11. 11.
    Neuenfeld, R.H., Fonesca, M.B., da Costa, E.A.C., Oses, J.P.: Exploiting addition schemes for the improvement of optimized radix-2 and radix-4 FFT butterflies. In: IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS). Bariloche, Argentina (2017)CrossRefGoogle Scholar
  12. 12.
    Neuenfeld, R., Fonesca, M., Costa, E.: Design of optimized radix-2 and radix-4 butterflies from FFT with decimation in time. In: IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS). Florianopolis, Brazil (2016)Google Scholar
  13. 13.
    Yu, C., Lee, K.H., Kuo, C.F.: Low-complexity twiddle factor generator for FFT processors. In: International Conference Consumer Electronics. Las Vegas, NV, USA (2017)Google Scholar
  14. 14.
    Chi, J.C., Chen, S.G.: An efficient twiddle factor generator. In: 12th European Signal Processing Conference. Austria, Vienna (2004)Google Scholar
  15. 15.
    Zhou, J.: A new method to generate twiddle factor using CORDIC based radix-4 FFT butterfly. In: 2013 International Conference on Communications, Circuits and Systems (ICCCAS). Chengdu, China (2013)Google Scholar
  16. 16.
    Shinde, S.N.: Twiddle factor generation using CORDIC processor for fingeprint application. In: 2015 International Conference on Computer, Communication and Control (ICA). Indore, India (2015)Google Scholar
  17. 17.
    Srar, J.A., Chung, K.-S., Mansour, A.: Analysis of the LLMS adaptive beamforming algorithm implemented with finite precision. In: IEEE Wireless Communications and Networking Conference (WCNC 2012). France, Paris (2012)Google Scholar
  18. 18.
    Najem, M., Bollengier, T., Le Lann, J.C., Lagadec, L.: A cost effective approach for efficient time-sharing of reconfigurable architectures. In: 2017 International Conference on FPGA Reconfiguration for General-Purpose Computing (FPGA4GPC). Hamburg, Germany (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ghattas Akkad
    • 1
    • 2
    Email author
  • Ali Mansour
    • 1
  • Bachar ElHassan
    • 3
  • Frederic Le Roy
    • 1
  • Mohamad Najem
    • 4
  1. 1.Lab-STICCCNRS, UMR 6285, ENSTA BretagneBrestFrance
  2. 2.Department of Electrical EngineeringUniversity of BalamandKouraLebanon
  3. 3.Faculty of EngineeringLebanese UniversityTripoliLebanon
  4. 4.Computer and Communication EngineeringLebanese International UniversityMount LebanonLebanon

Personalised recommendations