Advertisement

A Face Recognition System Using Off-the-Shelf Feature Extractors and an Ad-Hoc Classifier

  • Stefano MarsiEmail author
  • Luca De Bortoli
  • Francesco Guzzi
  • Jhilik Bhattacharya
  • Francesco Cicala
  • Sergio Carrato
  • Alfredo Canziani
  • Giovanni Ramponi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Face recognition systems are of great interest in many applications. We present some results from a comparison on different classification methods using an open source tool that works with Convolutional Neural Networks to extract facial features. This work focuses on the performance obtainable from a multi-class classifier, trained with a reduced number images, to identify a person between a group of known and unknown subjects . The overall system has been implemented in an Odroid XU-4 Platform.

Keywords

Face detection Face recognition Deep learning Convolutional Neural Networks 

Notes

Acknowledgements

University of Trieste—FRA projects.

References

  1. 1.
    Neto, L.B., Grijalva, F., Maike, V.R.M.L., Martini, L.C., Florencio, D., Baranauskas, M.C.C., Rocha, A., Goldenstein, S.: A kinect-based wearable face recognition system to aid visually impaired users. IEEE Trans. Hum. Mach. Syst. 47(1), 52–64 (2017)Google Scholar
  2. 2.
    Krishna, S., Little, G., Black, J., Panchanathan, S.: A wearable face recognition system for individuals with visual impairments. In: Proceedings of the 7th International ACM SIGACCESS Conference on Computers Accessibility, pp. 106–113 (2005)Google Scholar
  3. 3.
    Astler, D., et al.: Increased accessibility to nonverbal communication through facial and expression recognition technologies for blind/visually impaired subjects. In: Proceedings of the 13th International ACM SIGACCESS Conference Computers Accessibility, pp. 259–260 (2011) (2010, pp. 4538–4541, pp. 45–52)Google Scholar
  4. 4.
    Bansal, A., Castillo, C., Ranjan, R., Chellappa, R.: The Do’s and Don’ts for CNN-based Face Verification (2017)Google Scholar
  5. 5.
    Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: A general-purpose face recognition library with mobile applications, CMU-CS-16-118. Technical Report, CMU School of Computer Science (2016)Google Scholar
  6. 6.
  7. 7.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137154 (2004)CrossRefGoogle Scholar
  8. 8.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. https://arxiv.org/abs/1409.4842
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. https://arxiv.org/abs/1512.03385
  10. 10.
    Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 27–30. Paris, France (2014)Google Scholar
  11. 11.
    Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern RecognitionGoogle Scholar
  12. 12.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  13. 13.
    Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). https://arxiv.org/abs/1411.7923

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefano Marsi
    • 1
    Email author
  • Luca De Bortoli
    • 1
  • Francesco Guzzi
    • 1
  • Jhilik Bhattacharya
    • 2
  • Francesco Cicala
    • 1
  • Sergio Carrato
    • 1
  • Alfredo Canziani
    • 3
  • Giovanni Ramponi
    • 1
  1. 1.University of TriesteTriesteItaly
  2. 2.Thapar Institute of Engineering and TechnologyPatialaIndia
  3. 3.New York UniversityNew York CityUSA

Personalised recommendations