Advertisement

The Role of Stem Cells in Colorectal Cancer Carcinogenesis and Treatment

  • Farhadul Islam
  • Vinod Gopalan
  • Alfred King-yin LamEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Cancer stem cells (CSCs) are the cancer cells that are responsible for initiation, progression, metastasis, therapy resistance and recurrence in various cancers, including colorectal cancer. The aim of this chapter is to discuss the mechanisms responsible for these effects in colorectal cancer. Intrinsic factors, including increased activation of drug-efflux pumps, enhancing the capacity of DNA damage repair, dysregulation of growth and developmental signalling pathways, alterations of cellular metabolisms, environmental niche and impaired apoptotic response, attributed colorectal CSCs in their resistance to the adjuvant chemoradiotherapy to cancer. From the findings from translational research, CSCs profiles in patients with colorectal cancer could act as prognostic markers, which in turn reinforced the importance of CSCs in the carcinogenesis of colorectal cancer. Therefore, development of strategies targeting CSCs via inhibiting self-renewal signalling pathways or their components, blocking drug transporters and specific surface markers, inducing differentiation, boosting CSCs specific immune response and destroying their microenvironment in cancer has multifocal effects. These may exhibit better interference with the cancer and lead to improvement in treatment of patients with colorectal cancer. In summary, understanding and research of all these mechanisms of cancer stem cells could play in the improvement of the management of patients with CRC.

Keywords

Cancer stem cells Colorectal cancer Digestive system disease Therapy resistance Cancer recurrence 

Notes

Conflict of Interest

None

References

  1. 1.
    Mathonnet M, Perraud A, Christou N, Akil H, Melin C, Battu S, Jauberteau MO, Denizot Y. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells. World J Gastroenterol. 2014;20:4189–96.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Islam F, Qiao B, Smith RA, Gopalan V, Lam AK. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015a;98:184–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP. Cancer stem cells-old concepts, new insights. Cell Death Differ. 2008a;15:947–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Vermeulen L, de-Sousae Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13:e83–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, Chung IY, Kim IA, Kim EJ, Choi Y, Ryu HS, Park SY. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer. 2011;104:1730–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    World Health Organization (WHO). The problem. www.who.int/news-room/fact-sheets/details/cancer. Access at 18 July 17 2018.
  8. 8.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMedCrossRefGoogle Scholar
  9. 9.
    De Sousa E, Melo F, Vermeulen L, Fessler E, Medema JP. Cancer heterogeneity-a multifaceted view. EMBO Rep. 2013;14:686–95.CrossRefGoogle Scholar
  10. 10.
    Wersto RP, Liblit RL, Deitch D, Koss LG. Variability in DNA measurements in multiple tumor samples of human colonic carcinoma. Cancer. 1991;67:106–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 1963;199:79–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Brunschwig A, Southam CM, Levin AG. Host resistance to cancer. Clinical experiments by homotransplants, autotransplants and admixture of autologous leucocytes. Ann Surg. 1965;162:416–25.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197:461–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1:389–402.PubMedCrossRefGoogle Scholar
  15. 15.
    Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14:342–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Islam F, Gopalan V, Smith RA, Lam AK. Translational potential of cancer stem cells: a review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res. 2015b;335:135–47.PubMedCrossRefGoogle Scholar
  20. 20.
    MacArthur BD. Collective dynamics of stem cell populations. Proc Natl Acad Sci U S A. 2014;111:3653–4.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    MacArthur BD, Lemischka IR. Statistical mechanics of pluripotency. Cell. 2013;154:484–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Sánchez Alvarado A, Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell. 2014;157:110–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R. Colon cancer stem cells. J Mol Med (Berl). 2009;87:1097–104.CrossRefGoogle Scholar
  24. 24.
    Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell. 2005;7:17–23.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.PubMedCrossRefGoogle Scholar
  27. 27.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Gangemi R, Paleari L, Orengo AM, Cesario A, Chessa L, Ferrini S, Russo P. Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. Curr Med Chem. 2009;16:1688–703.PubMedCrossRefGoogle Scholar
  32. 32.
    Puglisi MA, Tesori V, Lattanzi W, Gasbarrini GB, Gasbarrini A. Colon cancer stem cells: controversies and perspectives. World J Gastroenterol. 2013;19:2997–3006.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zeuner A, Todaro M, Stassi G, De-Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15:692–705.PubMedCrossRefGoogle Scholar
  34. 34.
    Sottoriva A, Vermeulen L, Tavare ́S. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol. 2011;7:e1001132.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, Rupec RA, Gerhard M, Schmid R, Barker N, Clevers H, Lang R, Neumann J, Kirchner T, Taketo MM, van den Brink GR, Sansom OJ, Arkan MC, Greten FR. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem- cell-like properties. Cell. 2013;152:25–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, Brandtner A, Setlik W, Remotti H, Muley A, Chen X, May R, Houchen CW, Fox JG, Gershon MD, Quante M, Wang TC. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124:1283–95.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. Stem cells in colon cancer. A new era in cancer theory begins. Int J Color Dis. 2011;26:1–11.CrossRefGoogle Scholar
  38. 38.
    Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138:2151–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, Naka- nishi N, Kanda K, Komekado H, Kawada M, Isomura A, Kawada K, Sakai Y, Yanagita M, Kageyama R, Kawaguchi Y, Taketo MM, Yonehara S, Chiba T. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98–103.PubMedCrossRefGoogle Scholar
  40. 40.
    Kobayashi S, Yamada-Okabe H, Suzuki M, Natori O, Kato A, Matsu- bara K, Jau Chen Y, Yamazaki M, Funahashi S, Yoshida K, Hashimoto E, Watanabe Y, Mutoh H, Ashihara M, Kato C, Watanabe T, Yoshikubo T, Tamaoki N, Ochiya T, Kuroda M, Levine JA, Yamazaki T. LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells. 2012;30:2631–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, Vatan L, Sze- liga W, Dou Y, Owens S, Zgodzinski W, Majewski M, Wallner G, Fang J, Huang E, Zou W. IL-22(+) CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2014;40:772–84.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210:2851–72.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, Tsat- sanis A, Gallinger S, Dick JE. ID1 and ID3 regulate the self- renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell. 2012;21:777–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, Abel U, Arens A, Weichert W, Brand K, Koch M, Weitz J, Schmidt M, von Kalle C, Glimm H. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9:357–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Koren E, Fuchs Y. The bad seed: cancer stem cells in tumor development and resistance. Drug Resist Updat. 2016;28:1–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci. 2015;72:3411–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Ashley N, Yeung TM, Bodmer WF. Stem cell differentiation and lumen formation in colorectal cancer cell lines and primary tumors. Cancer Res. 2013;73:5798–809.PubMedCrossRefGoogle Scholar
  49. 49.
    Whissell G, Montagni E, Martinelli P, Hernando-Momblona X, Sevillano M, Jung P, Cortina C, Calon A, Abuli A, Castells A, Castellvi-Bel S, Nacht AS, Sancho E, Stephan-Otto Attolini C, Vicent GP, Real FX, Batlle E. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat Cell Biol. 2014;16:695–707.PubMedCrossRefGoogle Scholar
  50. 50.
    Li S, Li Q. Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Lett. 2015;357:438–47.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn M, Ischenko I, Angele M, Kleespies A, Jauch KW, Bruns C. Cancer stem cells and angiogenesis. Int J Dev Biol. 2011;55:477–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin SP, Lee YT, Yang SH, Miller SA, Chiou SH, Hung MC, Hung SC. Colon cancer stem cells resist antiangiogenesis therapy-induced apoptosis. Cancer Lett. 2013;328:226–34.PubMedCrossRefGoogle Scholar
  53. 53.
    Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, Ng IO, Man K, To KF, Lai PB, Lo CM, Guan XY, Chan KW. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 2012;55:807–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De-Maria R. Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Sleeman JP, Nazarenko I, Thiele W. Do all roads lead to Rome? Routes to metastasis development. Int J Cancer. 2011;128:2511–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Dittmar T, Heyder C, Gloria-Maercker E, Hatzmann W, Zänker KS. Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis. 2008;25:11–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM. Molecular interactions in cancer cell metastasis. Acta Histochem. 2010;112:3–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, Tan VP, Yau TC, Poon RT, Wong BC. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6:603–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z, Li Q. Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology. 2013;145:636–646 e635.PubMedCrossRefGoogle Scholar
  63. 63.
    Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23:620–33.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fulda S. Regulation of apoptosis pathways in cancer stem cells. Cancer Lett. 2013;338:168–73.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao Y, Zhang W, Guo Z, Ma F, Wu Y, Bai Y, Gong W, Chen Y, Cheng T, Zhi F, Zhang Y, Wang J, Jiang B. Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts. Oncol Rep. 2013;30:1782–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Feng Y, Dai X, Li X, Wang H, Liu J, Zhang J, Du Y, Xia L. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Prolif. 2012;45:413–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY, Cai S, Scheeren FA, Kuo AH, Diehn M. Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells. 2014;32:1734–45.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Colak S, Medema JP. Cancer stem cells-important players in tumor therapy resistance. FEBS J. 2014;281:4779–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz-deGalarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle. 2012;11:974–89.PubMedCrossRefGoogle Scholar
  70. 70.
    Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;90:615–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.PubMedCrossRefGoogle Scholar
  72. 72.
    Colak S, Zimberlin CD, Fessler E, Hogdal L, Prasetyanti PR, Grandela CM, Letai A, Medema JP. Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ. 2014;21:1170–7.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One. 2008;3:e2428.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One. 2011;6:e20636.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRefGoogle Scholar
  76. 76.
    Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vi- tiani L, Gulotta G, Dieli F, de Maria R, Stassi G. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 2011;140:297–309.PubMedCrossRefGoogle Scholar
  77. 77.
    Bogachek MV, Park JM, De Andrade JP, Lorenzen AW, Kulak MV, White JR, Gu VW, Wu VT, Weigel RJ. Inhibiting the SUMO pathway represses the cancer stem cell population in breast and colorectal carcinomas. Stem Cell Rep. 2016;7:1140–51.CrossRefGoogle Scholar
  78. 78.
    Zhai H, Fesler A, Ba Y, Wu S, Ju J. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget. 2015;6:19735–46.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Huang R, Wang G, Song Y, Tang Q, You Q, Liu Z, Chen Y, Zhang Q, Li J, Muhammand S, Wang X. Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep. 2015;12:2417–24.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Luraghi P, Reato G, Cipriano E, Sassi F, Orzan F, Bigatto V, De Bacco F, Menietti E, Han M, Rideout WM 3rd, Perera T, Bertotti A, Trusolino L, Comoglio PM, Boccaccio C. MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors. Cancer Res. 2014;74:1857–69.PubMedCrossRefGoogle Scholar
  81. 81.
    Fang DD, Zhang CC, Gu Y, Jani JP, Cao J, Tsaparikos K, Yuan J, Thiel M, Jackson-Fisher A, Zong Q, Lappin PB, Hayashi T, Schwab RB, Wong A, John-Baptiste A, Bagrodia S, Los G, Bender S, Christensen J, Vanarsdale T. Antitumor efficacy of the dual PI3K/mTOR inhibitor PF-04691502 in a human xenograft tumor model derived from colorectal cancer stem cells harboring a PIK3CA mutation. PLoS One. 2013;8:e67258.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10:147–56.PubMedCrossRefGoogle Scholar
  83. 83.
    Cinci L, Luceri C, Bigagli E, Carboni I, Paccosi S, Parenti A, Guasti D, Coronnello M. Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype. Cancer Med. 2016;5:1279–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol. 2013;108:378–87.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim E, Davidson LA, Zoh RS, Hensel ME, Patil BS, Jayaprakasha GK, Callaway ES, Allred CD, Turner ND, Weeks BR, Chapkin RS. Homeostatic responses of colonic LGR5+ stem cells following acute in vivo exposure to a genotoxic carcinogen. Carcinogenesis. 2016;37:206–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Boyer MJ, Cheng T. The CDK inhibitors: potential targets for therapeutic stem cell manipulations? Gene Ther. 2008;15:117–25.PubMedCrossRefGoogle Scholar
  88. 88.
    Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, Monté D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot FR, Hebbar M, Fan F, Ellis LM, Formstecher P, Van Seuningen I, Gespach C, Polakowska R, Huet G. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res. 2014;20:837–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Puca F, Colamaio M, Federico A, Gemei M, Tosti N, Bastos AU, Del Vecchio L, Pece S, Battista S, Fusco A. HMGA1 silencing restores normal stem cell characteristics in colon cancer stem cells by increasing p53 levels. Oncotarget. 2014;5:3234–45.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Damek-Poprawa M, Volgina A, Korostoff J, Sollecito TP, Brose MS, O’Malley BW Jr, Akintoye SO, DiRienzo JM. Targeted inhibition of CD133+ cells in oral cancer cell lines. J Dent Res. 2011;90:638–45.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells. Tumour Biol. 2013;31:243–53.CrossRefGoogle Scholar
  92. 92.
    Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, Wang Y, Li R, Yang Y, Zhao X, Xu XD, Yu ED, Rui YC, Liu HJ, Zhang L, Wei LX. CD133 (+) CXCR4 (+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 2012;10:85.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G 2nd, Samuel S, Kim MP, Lim SJ, Ellis LM. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69:1951–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sagiv E, Starr A, Rozovski U, Khosravi R, Altevogt P, Wang T, Arber N. Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res. 2008;68:2803–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Punt CJ, Nagy A, Douillard JY, Figer A, Skovsgaard T, Monson J, Barone C, Fountzilas G, Riess H, Moylan E, Jones D, Dethling J, Colman J, Coward L, MacGregor S. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet. 2002;360:671–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle. 2008;7:309–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Riethmüller G, Schneider-Gädicke E, Schlimok G, Schmiegel W, Raab R, Höffken K, Gruber R, Pichlmaier H, Hirche H, Pichlmayr R, et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet. 1994;343:1177–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH, Majumdar AP. Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res. 2011;28:827–38.PubMedCrossRefGoogle Scholar
  99. 99.
    van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med. 2005;11:496–502.PubMedCrossRefGoogle Scholar
  100. 100.
    Green DW, Roh H, Pippin JA, Drebin JA. Beta-catenin antisense treatment decreases beta-catenin expression and tumor growth rate in colon carcinoma xenografts. J Surg Res. 2001;101:16–20.PubMedCrossRefGoogle Scholar
  101. 101.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5:100–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Mueller MM, Fusenig NE. Friends or foes bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.PubMedCrossRefGoogle Scholar
  104. 104.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Arcangeli A, Carlà M, Del Bene MR, Becchetti A, Wanke E, Olivotto M. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential. Proc Natl Acad Sci U S A. 1993;90:5858–62.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 2001;61:8492–7.PubMedGoogle Scholar
  107. 107.
    Uchida H, Maruyama T, Nagashima T, Asada H, Yoshimura Y. Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology. 2005;146:5365–73.PubMedCrossRefGoogle Scholar
  108. 108.
    Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M, Yokobori T, Mimori K, Yamamoto H, Sekimoto M, Doki Y, Mori M. Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol. 2011;18:1166–74.PubMedCrossRefGoogle Scholar
  109. 109.
    Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res. 2009;69:8208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158–63.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Boesch M, Spizzo G, Seeber A. Concise review: aggressive colorectal cancer: role of epithelial cell adhesion molecule in cancer stem cells and epithelial-to-mesenchymal transition. Stem Cells Transl Med. 2018;7:495–501.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farhadul Islam
    • 1
    • 2
  • Vinod Gopalan
    • 1
  • Alfred King-yin Lam
    • 1
    Email author
  1. 1.Cancer Molecular PathologyGriffith UniversityGold CoastAustralia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh

Personalised recommendations