Introduction to Stem Cell Principles and Biology

  • Maria G. RoubelakisEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


A stem cell is defined as an unspecialized cell that can both self-renew and give rise to differentiated progeny. In particular stem cells can divide to generate at least one cell that retains the stem cell identity, and can also give rise to progenitors, or precursor cells, which typically differentiate into tissue-specific cell types. Stem cells are derived from embryonic, fetal, or adult tissue and are broadly categorized accordingly. Recent advances in regenerative medicine support the development of new and emerging areas of integrative research including stem cells, gene- and cell-based therapies, and tissue engineering. The type of human cells, the use of growth factors and cytokines to stimulate the production, and growth and function of cells, along with the cell sources, have shown a significant therapeutic impact to date and represent a rapidly grown area of regenerative medicine.


Stem cells Embryonic stem cells Fetal stem cells Adult stem cells Regenerative medicine MSCs HSCs 


  1. 1.
    Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Carpenter MK, et al. Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn. 2004;229(2):243–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Zheng D, Wang X, Xu RH. Concise review: one stone for multiple birds: generating universally compatible human embryonic stem cells. Stem Cells. 2016;34(9):2269–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Gordeeva OF. Pluripotent cells in embryogenesis and in teratoma formation. J Stem Cells. 2011;6(1):51–63.PubMedGoogle Scholar
  6. 6.
    Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15(2):59–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008;9(9):725–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Pennarossa G, et al. Erase and rewind: epigenetic conversion of cell fate. Stem Cell Rev. 2016;12(2):163–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Madonna R. Human-induced pluripotent stem cells: in quest of clinical applications. Mol Biotechnol. 2012;52(2):193–203.PubMedCrossRefGoogle Scholar
  11. 11.
    Trohatou O, Anagnou NP, Roubelakis MG. Human amniotic fluid stem cells as an attractive tool for clinical applications. Curr Stem Cell Res Ther. 2013;8(2):125–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Roubelakis MG. Therapeutic potential of fetal mesenchymal stem cells. Curr Stem Cell Res Ther. 2013;8(2):115–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4(3):423–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Atala A, et al. Principles of regenerative medicine. Academic Press, USA, 2nd ed. 2011. p. 1–1182.Google Scholar
  15. 15.
    De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Roubelakis MG, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007;16(6):931–52.PubMedCrossRefGoogle Scholar
  17. 17.
    In’t Anker PS, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.CrossRefGoogle Scholar
  18. 18.
    Roubelakis MG, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. 2011;15(9):1896–913.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tsai MS, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Delo DM, et al. Amniotic fluid and placental stem cells. Methods Enzymol. 2006;419:426–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Klemmt P. Application of amniotic fluid stem cells in basic science and tissue regeneration. Organogenesis. 2012;8(3):76.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Di Landro G, Dresch C, Poirier O. Granulomonocyte colony-forming cells in cord blood. Nouv Rev Fr Hematol. 1980;22(4):371–82.PubMedGoogle Scholar
  24. 24.
    Gluckman E, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Gluckman E, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7(3):219–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng Y, et al. Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol. 2003;31(12):1237–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Watt SM, Contreras M. Stem cell medicine: umbilical cord blood and its stem cell potential. Semin Fetal Neonatal Med. 2005;10(3):209–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Savarese TM, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9(3):R29.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Thierry D, et al. Hematopoietic stem cell potential from umbilical cord blood. Nouv Rev Fr Hematol. 1990;32(6):439–40.PubMedGoogle Scholar
  30. 30.
    Soncini M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1(4):296–305.PubMedCrossRefGoogle Scholar
  31. 31.
    Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 1986;45(6):917–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Bunting KD, Qu CK. The hematopoietic stem cell landscape. Methods Mol Biol. 2014;1185:3–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125(17):2605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015;16(3):239–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:628767.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Rani S, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38(2):810–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Lanza R, Langer R, Vacanti J. Principles of tissue engineering third edition preface to the second edition. Principles of Tissue Engineering. Academic Press, USA, 3rd ed. 2007. p. Xxxiii–Xxxiii.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Biology, School of MedicineNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations