Design Methods for Architectured Materials

  • F. X. KrommEmail author
  • H. Wargnier
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 282)


Architectured materials offer a great potential of performance for various applications, but they have to be tailored to fulfil each set of requirements. Designing an architectured material implies determining all its attributes: components, architecture, volume fractions, interfaces…Numerous methods have been developed for product design or for single material selection, but few deal with architectured materials. Because of the difficulty to determine all the parameters at the same time, studies have been carried out about specific tasks in architecture materials design. In this chapter, after having presented material selection methods and design or creativity methods that can be useful in this context, some results are detailed about methods for analysing the set of requirements, identify some incompatibilities between the functions, and select the components in the case where the architecture is defined.


  1. 1.
    H. Wargnier, F.X. Kromm, M. Danis, Y. Brechet, Mater. Des. 56, 44–49 (2014)CrossRefGoogle Scholar
  2. 2.
    M.F. Ashby, Y. Brechet, Acta Mater. 51, 5801–5821 (2003)CrossRefGoogle Scholar
  3. 3.
    F.X. Kromm, J.M. Quenisset, T. Lorriot, R. Harry, H. Wargnier, Mater. Des. 28, 2641–2646 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Gasser, Y. Brechet, F. Paun, Adv. Eng. Mater. 6(1–2), 97–102 (2004)CrossRefGoogle Scholar
  5. 5.
    M.F. Ashby, Mat. Sci. Tech. 5, 517–525 (1989)CrossRefGoogle Scholar
  6. 6.
    M. Farag, in Handbook of Materials Selection, ed. by M. Kutz (2002), pp. 3–24Google Scholar
  7. 7.
    S.M. Sapuan, Mater. Des. 22 (2001)Google Scholar
  8. 8.
    M. Buggy, C. Conlon, J Mater. Process. Technol. 153–154, 213–218 (2004)CrossRefGoogle Scholar
  9. 9.
    A.M. Lovatt, H.R. Shercliff, Mater. Des. 19, 205–215 (1998)CrossRefGoogle Scholar
  10. 10.
    K.L. Edwards, Mater. Des. 26, 469–473 (2005)CrossRefGoogle Scholar
  11. 11.
    M.F. Ashby, Y. Brechet, D. Cebon, L. Salvo, Mater. Des. 25, 51–67 (2004)CrossRefGoogle Scholar
  12. 12.
    M.F. Ashby, Acta Mater. 48, 359–369 (2000)CrossRefGoogle Scholar
  13. 13.
    S. Giaccobi, F.X. Kromm, H. Wargnier, M. Danis, Mater. Des. 31(4), 1842–1847 (2010)CrossRefGoogle Scholar
  14. 14.
    J.R. Wilson, S.M. Grey-Taylor, Int. J. Ind. Ergonom. 16, 353–365 (1995)CrossRefGoogle Scholar
  15. 15.
    N. Perry, A. Bernard, F. Laroche, S. Pompidou, CIRP Ann. - Manuf. Technol. 61(1), 151–154 (2012)Google Scholar
  16. 16.
    M.F. Ashby, Materials and the Environment (Butterworth-Heinemann/Elsevier, 2009)Google Scholar
  17. 17.
    G. Pahl, W. Beitz, Engineering Design (Springer, 1984)Google Scholar
  18. 18.
    D. Cavallucci, Techniques de l’ingénieur A5(211), 1–18 (1999)Google Scholar
  19. 19.
    M. Rahman, M.A. Mansur, Z. Feng, Mater. Des. 16(4) (1995)Google Scholar
  20. 20.
    H. Sugishita, H. Nishiyama, O. Nagayasu, T. Shin-nou, H. Sato, M. O-hori, CIRP Ann. Manuf. Technol. 37(1) (1988)Google Scholar
  21. 21.
    P.M. Weaver, M.F. Ashby, J. Eng. Des. 7(2), 129–150 (1996)Google Scholar
  22. 22.
    D. Pasini, Mater. Des. 28(7) (2007)Google Scholar
  23. 23.
    L. Laszczyk, Ph.D. thesis, Grenoble University, 2011Google Scholar
  24. 24.
    J.W.C. Dunlop, P. Fratzl, Scripta Mater. 68, 8–12 (2013)Google Scholar
  25. 25.
    P. Bollen, N. Quievy, I. Huynen, C. Bailly, C. Detrembleur, J.M. Thomassine, T. Pardoen, Scripta Mater. 68, 50–54 (2013)Google Scholar
  26. 26.
    L. Duratti, L. Salvo, D. Landru, Y. Brechet, Adv. Eng. Mater. 4(6) (2002)Google Scholar
  27. 27.
    N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, Y. Brechet, Struct. Multidisc Optim. 50, 623–644 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de BordeauxTalenceFrance

Personalised recommendations