Advertisement

Topological Interlocking Materials

  • A. V. Dyskin
  • Yuri EstrinEmail author
  • E. Pasternak
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 282)

Abstract

In this chapter, we present a materials design principle which is based on the use of segmented, rather than monolithic, structures consisting of identical blocks locked within the assembly by virtue of their special geometry and mutual arrangement. First, a brief history of the concept of topological interlocking materials and structures is presented and current trends in research are outlined. Recent work of the authors and colleagues directed at the variation of the shape of interlockable building blocks and the mechanical performance of structures—either assembled from them or 3D printed—are overviewed. Special emphasis is put on materials responsive to external stimuli. Finally, an outlook to possible new designs of topological interlocking materials and their engineering applications is given.

References

  1. 1.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements. Scripta Mater. 44, 2689–2694 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Estrin, A.V. Dyskin, E. Pasternak, Topological interlocking as a material design concept. Mater. Sci. Eng. C, 31(6), 1189–1194 (2011)Google Scholar
  3. 3.
    M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)CrossRefGoogle Scholar
  4. 4.
    M.F. Ashby, Materials Selection for Mechanical Design, 4th edn. (Elsevier Ltd., 2011)Google Scholar
  5. 5.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, Topological interlocking of platonic solids: a way to new materials and structures. Philos. Mag. Lett. 83(3), 197–203 (2003)Google Scholar
  6. 6.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, Interlocking properties of buckyballs. Phys. Lett. A 319, 373–378 (2003)CrossRefGoogle Scholar
  7. 7.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak. Toughening by fragmentation—how topology helps. Adv. Eng. Mater. 3(11), 885–888 (2001)Google Scholar
  8. 8.
    A. Dyskin, E. Pasternak, Y. Estrin, Topological interlocking as a design principle for hybrid materials in Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, ed. by F. Marquis (Springer, Cham, 2013), pp. 1525–1534Google Scholar
  9. 9.
    A.J. Kanel-Belov, A. Dyskin, Y. Estrin, E. Pasternak, I.A. Ivanov-Pogodaev, Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Math. J. 10(2), 337–342 (2010)CrossRefGoogle Scholar
  10. 10.
    A.V. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, A.J. Kanel-Belov, Fracture resistant structures based on topological interlocking with non-planar contacts. Adv. Eng. Mater. 5, 116–119 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Feng, T. Siegmund, E. Habtour, J. Riddick, Impact mechanics of topologically interlocked material assemblies. Int. J. Impact Eng 75, 140–149 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Khandelwal, T. Siegmund, R.J. Cipra, J.S. Bolton, Adaptive mechanical properties of topologically interlocking material systems. Smart Mater. Struct. 24, 045037 (2015)Google Scholar
  13. 13.
    S. Leo, C. Tallon, N. Stone, G.V. Franks, Near-net-shaping methods for ceramic elements of (Body) Armor systems. J. Am. Ceram. Soc. 97(10), 3013–3033 (2014)CrossRefGoogle Scholar
  14. 14.
    H.-C. Ries, M.V. Carlesso, C. Eigenbrod, C. Kroll, K. Rezwan (2013). On the performance of porous sound absorbent ceramic lining in a combustion chamber test rig, in Proceedings of ASME turbo expo 2013: Turbine Technical Conference and Exposition (At San Antonio, Texas, USA, 2013) GT2013–95492, Volume: GT2013–95492Google Scholar
  15. 15.
    W. Feng-chun, Y. Zhi-hong, Z. Na, Z. Heng, Design and experiment for topological interlocking fragile composites structure. Acta Armamentarii 29(12), 1454–1457 (2008)Google Scholar
  16. 16.
    G. Fallacara, Digital stereotomy and topological transformations: reasoning about shape building, in Proceedings of the second international congress on construction history, vol 1. pp. 1075–1092 (2006)Google Scholar
  17. 17.
    G. Fallacara, Toward a stereotomic design: experimental constructions and didactic experiences, in Proceedings of the Third International Congress on Construction History (Cottbus, May 2009), pp. 553–559Google Scholar
  18. 18.
    Y. Estrin, Topological interlocking and osteomorphic blocks, in Preface to Stereotomic design—Catalogo della mostra omonima per Inside Marmomacc and Abitare il Tempo Veronafiere, ed. by G. Fallacara, V. Minenna (Verona, Edizioni Giofredda 2014)Google Scholar
  19. 19.
    D.A. Robson, German patent DE 2554516; British patent GB1533980 (1978)Google Scholar
  20. 20.
    M. Glickman, The G-block system of vertically interlocking paving, in 2nd International Conference on Concrete Block Paving, Delft University of Technology, Apr. 10–12, American Society for Testing and Materials (Delft, The Netherlands, 1984), pp. 345–348.Google Scholar
  21. 21.
    O. Tessmann, M. Becker, Extremely heavy and incredibly light: performative assemblies in dynamic environments, in Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) (Department of Architecture, National University of Singapore, Singapore, May 15–18, 2013), pp. 469–478Google Scholar
  22. 22.
    M. Weizmann, O. Amir, Y.J. Grobman, Topological interlocking in buildings: a case for the design and construction of floors. Autom. Constr. 72(Part 1), 18–25 (2016)Google Scholar
  23. 23.
    I. Miodragovic Vella, T. Kotnik, Geometric Versatility of abeille vault. A stereotomic, topological interlocking assembly, in 34th Annual eCAADe Conference, Oulu School of Architecture, Finland, Shape, Form and Geometry. Applications, Volume 2, eCAADe 34, 391–397 (2016).Google Scholar
  24. 24.
    S. Alothman, C. Chavan, Topological interlocking systems for the construction of seismic-proof shell structures, in Proceedings of the IASS Symposium 2018: Creativity in Structural Design, July 16–20, 2018 (MIT, Boston, USA, 2018)Google Scholar
  25. 25.
    F. Oikonomopoulou, T. Bristogianni, L. Barou, E. Jacobs, G. Frigo, F.A. Veer, R. Nijsse, A novel, demountable structural glass system out of dry-assembly, in Interlocking Cast Glass Components, Challenging Glass 6—Conference on Architectural and Structural Applications of Glass Louter, ed. by B., Bos, N., Veer (Delft University of Technology, May 2018).  https://doi.org/10.7480/cgc.6.2118
  26. 26.
    A.R. Javan, H. Seifi, S. Xu, Y.M. Xie. Design of a new type of interlocking brick and evaluation of its dynamic performance, in Proceedings of the IASS Annual Symposium 2016 ‘Spatial Structures in the 21st Century, ed. by J.K. Kawaguchi, M. Ohsaki, T. Takeuchi (Tokyo, 26–30 September, 2016)Google Scholar
  27. 27.
    S. Weir, D. Moult, S. Fernando, Stereotomy of wave jointed blocks—toward a wave-jointed stone construction using wire cutter toolpath generation robotic fabrication in architecture, Art and Design 284–293 (2016)Google Scholar
  28. 28.
    Y. Totoev, A. Al Harthy, Semi interlocking masonry as infill wall system for earthquake resistant buildings: a review. J. Eng. Res. (TJER) 13(1), 33–41 (2016)CrossRefGoogle Scholar
  29. 29.
    A.M. Sá, K..R. Echavarria, M. Griffin, D. Covill, J. Kaminski, D. Arnold (2012) Parametric 3D-fitted frames for packaging heritage artefacts in The 13th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), ed. by D. Arnold, J. Kaminski, F. Niccolucci, A. Stork (2012)Google Scholar
  30. 30.
    B. Zareiyan, B. Khoshnevis, Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom. Constr. 83, 212–221 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Estrin, A.V. Dyskin, E. Pasternak, H.C. Khor, A.J. Kanel-Belov, Topological interlocking of protective tiles for space shuttle. Phil. Mag. Lett. 83, 351–355 (2003)CrossRefGoogle Scholar
  32. 32.
    A. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, A.J. Kanel-Belov, The principle of topological interlocking in extraterrestrial construction. Acta Astronaut. 57(1), 1–64 (2005)CrossRefGoogle Scholar
  33. 33.
    A.V. Dyskin, H.C. Khor, D. Yong, E. Pasternak, Y. Estrin, A.J. Kanel-Belov, Deployable interlocking structures for Martian bases, in Proceedings of 7th Australian Mars Exploration Conference, July 13–15, 2007, (Trinity College Perth, Western Australia (CD) 2007)Google Scholar
  34. 34.
    E. Pasternak, A.V. Dyskin, C. Pattiaratchi,, E. Pelinovsky, Coastal protection using topological interlocking blocks. EGU General Assembly 2013, held 7–12 April, 2013 in Vienna, Austria, Paper ID: EGU2013-8048, (2013)Google Scholar
  35. 35.
    V.Y. Piirainen, Y. Estrin, Topological interlocking as a principle of engineering design in construction of marine and coastal structures. J. Min. Inst. 226, 480–486 (2017)Google Scholar
  36. 36.
    H.C. Dyskin, D. Khor, E. Yong, Y.E Pasternak, A.J. Kanel-Belov, Deployable interlocking structures for Martian bases in Proeedings of 7th Australian Mars Exploration Conference, (Trinity College Perth, Western Australia (CD-ROM), July 13–15, 2007)Google Scholar
  37. 37.
    P. Houlis, A.V. Dyskin, A. Kanel-Belov, E. Pasternak, Y. Estrin, Puzzle DESIGN Competition, http://www.kastellorizo.org/puzzleuniversity/html/slickred/Puzzle_OneFourAll.html (2010)
  38. 38.
    P. Houlis, A.V. Dyskin, E. Pasternak, Y. Estrin, A. Kanel-Belov. Topological interlocking puzzle. Australian Patent application 20109–2951 (2010)Google Scholar
  39. 39.
    S. Khandelwal, T. Siegmund, R.J. Cipra, J.S. Bolton, Transverse Loading of Cellular Topologically Interlocked Materials. Int. J. Solids Struct. 49(18), 2394–2403 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Khandelwal, R.J. Cipra, J.S. Bolton, T. Siegmund, Adaptive mechanical properties of topologically interlocking material systems. Smart Mater. Struct. 24(4), 045037 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Feng, T. Siegmund, E.E. Habtour, J, Riddick, (2015) Impact mechanics of topologically interlocked material assemblies. Intl. J. Impact Eng. 75, 140–149Google Scholar
  42. 42.
    T. Siegmund, F. Barthelat, R.J. Cipra, E. Habtour, J. Riddick, Manufacture and mechanics of topologically interlocked material assemblies. Appl. Mech. Rev. 68(4), 041401–12016 (2016)Google Scholar
  43. 43.
    A. Mather, R.J. Cipra, T. Siegmund, Structural integrity during remanufacture of a topologically interlocked material. Int. J. Struct. Integr. 3(1), 61–78 (2012)CrossRefGoogle Scholar
  44. 44.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, A new principle in design of composite materials: reinforcement by interlocked elements. Compos. Sci. Technol. 63(3–4), 483–491 (2003)CrossRefGoogle Scholar
  45. 45.
    M. Brocato, A continuum model of interlocking structural systems. Rend. Lincei Mat. Appl. 29, 63–83 (2018).  https://doi.org/10.4171/RLM/793CrossRefGoogle Scholar
  46. 46.
    A.V. Dyskin, E. Pasternak, H.C. Khor, Y. Estrin, A.J. Kanel-Belov, Mortar-free construction based on topological interlocking, in Developments in Mechanics of Structures and Materials, ed. by A. Deeks, H. Hao (Taylor and Francis Group, London, 2005), pp. 665–670Google Scholar
  47. 47.
    A.V. Dyskin, E. Pasternak, Y. Estrin, Mortarless structures based on topological interlocking. Front. Struct. Civil Eng. 6(2), 188–197 (2012)Google Scholar
  48. 48.
    A.V. Dyskin, D. Yong, E. Pasternak, Y. Estrin, Stresses in topologically interlocking structures: two scale approach, in ICTAM 2008, XXII International Congress of Theoretical and Applied Mechanics, ed. by Denier, J., Finn, M.D., Mattner T., Adelaide, August 24–29, 2008, CD-ROM Proceedings ISBN 978-0-9805142-1-6, paper 10134 (2008)Google Scholar
  49. 49.
    M. Khudyakov, A.V. Dyskin, E. Pasternak, B. Lehane, Optimal through holes in osteomorphic elements in Proceeding of the 10th International Conference on Structural Integrity and Failure (SIF2016), ed. by A. Kotousov, J Ma. Adelaide, Australia, 2016, Paper #36 (2016)Google Scholar
  50. 50.
    Y. Estrin, A.V. Dyskin, E. Pasternak, Topological interlocking in design of structures and materials, in Architectured Multifunctional Materials, ed. by Y. Brechet, J.D. Embury, P.R. Onck (Mater. Res. Soc. Symp. Proc. Volume 1188, Warrendale, PA, 2009, 1188-LL05–06) Paper T40.014Google Scholar
  51. 51.
    Y. Estrin, A.V. Dyskin, A.J. Kanel-Belov, E. Pasternak, Materials with novel architectonics: Assemblies of interlocked elements, in IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-homogeneous Materials, ed. by B. Karihaloo, Cardiff, UK, June 18–22, 2001 (Kluwer Academic Press, 2002), pp. 51–56Google Scholar
  52. 52.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, E. Pasternak, A new class of composite materials based on topological interlocking, in Applied mechanics—Progress and application. ACAM 2002 The Third Australasian Congress on Applied Mechanics Sydney, February 20–22, 2002, ed. by L. Zhang, L. Tong, J. Gal (World Scientific, Singapore, New Jersey, London, Hong Kong, 2002), pp.485–490Google Scholar
  53. 53.
    A.V. Dyskin, A. Caballero, Orthogonal crack approaching an interface. Eng. Fract. Mech. 76(16), 2476–2485 (2009)CrossRefGoogle Scholar
  54. 54.
    H.C. Khor, A.V. Dyskin, Y. Estrin, E. Pasternak, Mechanisms of fracturing in structures built from topologically interlocked blocks, in Structural Integrity and Fracture, SIF 2004 ed by A. Atrens, J.N. Boland, R. Clegg, J.R. Griffiths, pp. 189–194Google Scholar
  55. 55.
    H.C. Khor, A.V. Dyskin, E. Pasternak, Y. Estrin, A.J. Kanel-Belov, Integrity and fracture of plate-like assemblies of topologically interlocked elements, in Structural Integrity and Fracture, ed. by A.V. Dyskin, X.Z. Hu, E. Sahouryeh (Swets & Zeitlinger, Lisse, 2002), pp. 449–456Google Scholar
  56. 56.
    A. Molotnikov, Y. Estrin, A.V. Dyskin, E. Pasternak, A.J. Kanel-Belov, Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Eng. Fract. Mech. 74, 1222–1232 (2007)CrossRefGoogle Scholar
  57. 57.
    Y. Estrin, A.V. Dyskin, E. Pasternak, S. Schaare, S. Stanchits, A.J. Kanel-Belov, Negative stiffness of a layer with topologically interlocked elements. Scripta Mater. 50, 291–294 (2004)CrossRefGoogle Scholar
  58. 58.
    S. Schaare, A.V. Dyskin, Y. Estrin, S. Arndt, E. Pasternak, A.J. Kanel-Belov, Point loading of assemblies of interlocked cube-shaped elements. Int. J. Eng. Sciences 46, 1228–1238 (2008)CrossRefGoogle Scholar
  59. 59.
    E. Pasternak, A.V. Dyskin, I. Shufrin, Homogenisation methods in mechanics of fragmented solids and hybrid materials in 7th Australasian Congress on Applied Mechanics, ACAM 7, 9–12 December 2012, Adelaide, Australia. Paper 138, pp. 563–573 (2012)Google Scholar
  60. 60.
    I. Shufrin, E. Pasternak, A.V. Dyskin, Bending and stability of fragmented beams, in 8th Australasian Congress of Applied Mechanics ACAM 8 Melbourne 23–26 November 2014 ed by R. Das, S. John, 8 pp (2014)Google Scholar
  61. 61.
    A.V. Dyskin, E. Pasternak, E. Pelinovsky. Modelling resonances in topological interlocking structures. ACAM2007, in Proceeding 5th Australasian Congress on Applied Mechanics, 10–12 December 2007, Brisbane, Australia, vol. 2, ed by F. Albermani, B. Daniel, J. Griffiths, D. Hargreaves, P. Meehan, A. Tan, M. Veidt, (2007), pp. 408–413Google Scholar
  62. 62.
    A.V. Dyskin, E. Pasternak, E. Pelinovsky, Coupled bilinear oscillators, their resonances and controlling parameters, in Proceedings. 6th Australasian Congress on Applied Mechanics, ACAM 6, ed by K. Teh, I. Davies I. Howard 12–15 December 2010, Perth, Paper 1170, 9 pp. ISBN/ISSN 978-0-85825-941-6, 12/12/2010Google Scholar
  63. 63.
    A.V. Dyskin, E. Pasternak, E. Pelinovsky, Periodic motions and resonances of impact oscillators. J. Sound Vibr. 331(12) 2856–2873 (2012)Google Scholar
  64. 64.
    I. Shufrin, A.V. Dyskin, E. Pasternak, Stationary points created by resonances in a chain of bilinear oscillators, in 7th Australasian Congress on Applied Mechanics, ACAM 7, 9–12 December 2012, Adelaide, Australia. Paper 131 (2012)Google Scholar
  65. 65.
    A.V. Dyskin, E. Pasternak, I. Shufrin, Structure of resonances and formation of stationary points in symmetrical chains of bilinear oscillators. J. Sound Vib. 333, 6590–6606 (2014)CrossRefGoogle Scholar
  66. 66.
    A. Guzek, A.V. Dyskin, E. Pasternak, I. Shufrin, Asymptotic analysis of bilinear oscillators with preload. Int. J. Eng. Sci. 106, 125–141 (2016)CrossRefGoogle Scholar
  67. 67.
    I.N. Psycharis, D.Y. Papastamatiou, A.P. Alexandris, Parametric investigation of the stability of classical columns under harmonic and earthquake excitations. Earthquake Engng. Struct. Dyn. 29, 1093–1109 (2000)CrossRefGoogle Scholar
  68. 68.
    M. Khudyakov, A.V. Dyskin, E. Pasternak, Continuum model of wave propagation in fragmented media: linear damping approximation. Nonlinear Proc. Geophys. (NPG) 24, 461–466 (2017)CrossRefGoogle Scholar
  69. 69.
    H.C. Khor, A.V. Dyskin, N. Nofal, E. Pasternak, Y. Estrin, Topological Interlocking—A New Principle in Design of Concrete Structures, Futures in Mechanics of Structures and Materials, in Proceedings 20th Australasian Conference on the Mechanics of Structures and Materials (ACMSM20), Toowoomba, Queensland, Australia, 2–5 December 2008, 5 pp (2008)Google Scholar
  70. 70.
    W. Quan, W. Nan, A review on structural enhancement and repair using piezoelectric materials and shape memory alloys. Smart Mater. Struct. 21, 013001 (2012)CrossRefGoogle Scholar
  71. 71.
    A. Molotnikov, R. Gerbrand, Y. Qi, G.P. Simon, Y. Estrin, Design of responsive materials using topologically interlocked elements. Smart Mater. Struct. 24, 25034 (2015)CrossRefGoogle Scholar
  72. 72.
    Y. Estrin, A. Molotnikov, G.P. Simon, S. Kaloshkin, F. Senatov, A. Maksimkin, Flexible ceramics with self-stiffening capability, Presented at: European Symposium on Intelligent Materials 2015, 10–12 June 2015, Kiel, Germany (2015)Google Scholar
  73. 73.
    Djumas, L., Molotnikov, A., Simon, G.P., Estrin, Y., Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry, Scientific Reports 6, Article number: 26706 (2016)Google Scholar
  74. 74.
    L. Djumas, G.P. Simon, Y. Estrin, A. Molotnikov, Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry, Scientific Reports, 7, Article number: 11844 (2017)Google Scholar
  75. 75.
    A. Rezaee Javan, H. Seifi, S. Xu, D. Ruan, Y.M. Xie, The impact behaviour of plate-like assemblies made of newinterlocking bricks: an experimental study. Mater. Des. 134, 361–373 (2017)CrossRefGoogle Scholar
  76. 76.
    H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Prog. Mater Sci. 54, 1059–1100 (2009)CrossRefGoogle Scholar
  77. 77.
    Y. Beygelzimer, Y. Estrin, R. Kulagin, Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv. Eng. Mater. 17(12), 1852–1861 (2015)Google Scholar
  78. 78.
    M. Carlesso, A. Molotnikov, T. Krause, K. Tushtev, S. Kroll, K. Rezwan, Y. Estrin, Enhancement of sound absorption properties using topologically interlocked elements. Scripta Mater. 66, 483–486 (2012)CrossRefGoogle Scholar
  79. 79.
    M. Carlesso, R. Giacomelli, T. Krause, A. Molotnikov, D. Koch, K. Tushtev, S. Kroll, Y. Estrin, K. Rezwan, Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks. J. Eur. Ceram. Soc. 33, 2549–2558 (2013)CrossRefGoogle Scholar
  80. 80.
    H.-C. Ries, M. Carlesso, C. Eigenbrod, S. Kroll, K. Rezwan, On the performance of porous sound absorbent ceramic lining in a combustion chamber test rig, in Proceedings of ASME Turbo Expo 2013 GT2013 (San Antonio, Texas, USA, June 3–7, 2013)Google Scholar
  81. 81.
    Y. Estrin, A.V. Dyskin, E. Pasternak, S. Schaare, Topological interlocking in design of structures and materials, in Architectured Multifunctional Materials, ed by Y. Brechet, J.D. Embury, P.R. Onck Mater. Res. Soc. Symp. Proc. Volume 1188, Warrendale, PA, 2009, 1188-LL05–06. Paper T40.014, 10 pp (2009)Google Scholar
  82. 82.
    M. Mirkhalaf, J. Tanguay, F. Barthelat, Carving 3D architectures within glass: exploring new strategies to transform the mechanics and performance of materials, extreme mech. Lett. 7, 104–113 (2016)Google Scholar
  83. 83.
    D. Trenke, J. Estrin, Selbsttragende Strukturen und deren Fertigung durch Rapid Tooling IMW, TU Clausthal—Institutsmitteilung Nr. 28 (2003)Google Scholar
  84. 84.
    Y. Estrin, N. Müller, D. Trenke, A. Dyskin, E. Pasternak, Structure composed of elements and method of its production, US Patent #6884486 (26.4.2005) (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Environment and Mining EngineeringThe University of Western AustraliaPerthAustralia
  2. 2.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  3. 3.Department of Mechanical EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations