Advertisement

Introduction

  • Fadhil RahmaEmail author
  • Saif Muneam
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Any two-terminal element exhibits pinched hysteresis loop when derived by bipolar periodic current (response voltage) or periodic voltage (response current), in the voltagecurrent plane, can be called memristor. The pinched hysteresis loop is a fingerprint of memristor (Adhikari et al. in IEEE Trans. Circ. Syst. I Regul. Pap. 60:3008–3021, 2013 [1]).

References

  1. 1.
    S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circ. Syst. I Regul. Pap. 60(11), 3008–3021 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Chua, If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Chua, Memristor—the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)CrossRefGoogle Scholar
  4. 4.
    A.G. Radwan, M.E. Fouda, On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, vol. 26 (Springer International Publishing, Switzerland, 2015). ISBN 978-3-319-17490-7Google Scholar
  5. 5.
    J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429 (2008)CrossRefGoogle Scholar
  6. 6.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80 (2008)CrossRefGoogle Scholar
  7. 7.
    M.P. Kennedy, Three steps to chaos. II. A Chua’s circuit primer. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 40(10), 657–674 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Thomas, Memristor-based neural networks. J. Phys. D Appl. Phys. 46(9), 093001 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Muthuswamy, P.P. Kokate, Memristor-based chaotic circuits. IETE Techn. Rev. 26(6), 417–429 (2009)CrossRefGoogle Scholar
  11. 11.
    B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20(05), 1335–1350 (2010)CrossRefGoogle Scholar
  12. 12.
    B. Bo-Cheng, X. Jian-Ping, Z. Guo-Hua, M. Zheng-Hua, Z. Ling, Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011)Google Scholar
  13. 13.
    Y. Li, L. Zhao, W. Chi, S. Lu, X. Huang, Implementation of a new memristor based chaotic system, in IEEE Fifth International Workshop on Chaos-Fractals Theories and Applications, pp. 92–96 (2012)Google Scholar
  14. 14.
    V.-T. Pham, A. Buscarino, L. Fortuna, M. Frasca, Simple memristive time-delay chaotic systems. Int. J. Bifurcat. Chaos 23(04), 1350073 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Z. Wang, F. Min, and E. Wang, A new hyperchaotic circuit with two memristors and its application in image encryption. AIP Adv. 6(9), 095316 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Xu, Q. Zhang, B. Bao, and Y. Hu, Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039–21045 (2017)CrossRefGoogle Scholar
  17. 17.
    T.L. Carroll, L.M. Pecora, Synchronization in chaotic Systems, Phys. Rev. Lett. 64(8), 215–248 (1990)Google Scholar
  18. 18.
    T.-L. Liao, S.-H. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons & Fractals 11(9), 1387–1396 (2000)CrossRefGoogle Scholar
  19. 19.
    T. Huang, C. Li, W. Yu, G. Chen, Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. IOPsci. Nonlinearity 22(3), 569 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    V.K. Tamba, K. Rajagopal, V.-T. Pham, D.V. Hoang, Chaos in a system with an absolute nonlinearity and chaos synchronization. Adv. Math. Phys. 2018 (2018)Google Scholar
  21. 21.
    K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circ. Syst. II Analog Digital Signal Process. 40(10), 626–633 (1993)CrossRefGoogle Scholar
  22. 22.
    T. Yang, C.W. Wu, L.O. Chua, Cryptography based on chaotic systems. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 44(5), 469–472 (1997)Google Scholar
  23. 23.
    K. Fallahi, R. Raoufi, H. Khoshbin, An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm. Commun. Nonlinear Sci. Numer. Simul. 13(4), 763–781 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Volos, A. Akgul, V.-T. Pham, I. Stouboulos, I. Kyprianidis, A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 89(2), 1047–1061 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of BasrahBasrahIraq

Personalised recommendations