Advertisement

Designing Usable Bioinformatics Tools for Specialized Users

  • Chanaka MannapperumaEmail author
  • Nathaniel Street
  • John Waterworth
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

Visualization - the process of interpreting data into visual forms - is increasingly important in science as data grows rapidly in volume and complexity. A common challenge faced by many biologists is how to benefit from this data deluge without being overwhelmed by it. Here, our main interest is in the visualization of genomes, sequence alignments, phylogenies and systems biology data. Bringing together new technologies, including design theory, and applying them into the above three areas in biology will improve the usability and user interaction. The main goal of this paper is to apply design principles to make bioinformatics resources, evaluate them using different usability methods, and provide recommended steps to design usable tools.

Keywords

User experience designing Participatory design Bioinformatics 

Notes

Acknowledgements

Special thanks to all the participants assisting voluntarily with the survey, observation and interviews. We thank Anna Croon Fors and Hannele Tuominen for extensive support and feedback. We are also very grateful to PlantGenIE and UPSC Bioinformatics teams for helping with the design and development of tools and Niklas Mähler for the design of Figure 3.0.

References

  1. 1.
    Sundell, D., Mannapperuma, C., Netotea, S., Delhomme, N., Lin, Y.-C., Sjödin, A., de Peer, Y., Jansson, S., Hvidsten, R.T., Street, R.N.: The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 208(4), 1149–1156 (2015)CrossRefGoogle Scholar
  2. 2.
    Xiong, J.: Essential Bioinformatics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    ISO 9241-110:2006: Ergonomics of human-system interaction – Part 110: Dialogue principlesGoogle Scholar
  4. 4.
    Al-ageel, N., Al-wabil, A., Badr, G., Alomar, N.: Human factors in the design and evaluation of bioinformatics tools. ScienceDirect (2015)Google Scholar
  5. 5.
    Pavelin, K., Cham, J.A., de Matos, P., Brooksbank, C., Cameron, G., Steinbeck, C.: Bioinformatics meets user-centred design: a perspective. PLoS Comput. Biol. 8(7), e1002554 (2012)CrossRefGoogle Scholar
  6. 6.
    Javahery, H., Seffah, A., Radhakrishnan, T.: Beyond power. Commun. ACM 47(11), 58 (2004)CrossRefGoogle Scholar
  7. 7.
    Mirel, B., Wright, Z.: Heuristic evaluations of bioinformatics tools: a development case. In: Human-Computer Interaction, Pt I (2009)CrossRefGoogle Scholar
  8. 8.
    Mirel, B.: Usability and usefulness in bioinformatics: evaluating a tool for querying and analyzing protein interactions based on scientists’ actual research questions. In: 2007 IEEE International Professional Communication Conference, pp. 1–8 (2007)Google Scholar
  9. 9.
    Douglas, C., Goulding, R., Farris, L., Atkinson-Grosjean, J.: Socio-Cultural characteristics of usability of bioinformatics databases and tools. Interdiscip. Sci. Rev. 36(1), 55–71 (2011)CrossRefGoogle Scholar
  10. 10.
    Bolchini, D., Finkelstein, A., Perrone, V., Nagl, S.: Better bioinformatics through usability analysis. Bioinformatics 25(3), 406–412 (2009)CrossRefGoogle Scholar
  11. 11.
    Bolchini, D., Finkestein, A., Paolini, P.: Designing usable bio-information architectures. In: Human-Computer Interaction. Interacting in Various Application Domains, pp. 653–662 (2009)CrossRefGoogle Scholar
  12. 12.
    Hassani-Pak, K., Rawlings, C.: Knowledge discovery in biological databases for revealing candidate genes linked to complex phenotypes. J. Integr. Bioinform. 4, 1–2 (2017).  https://doi.org/10.1515/jib-2016-0002Google Scholar
  13. 13.
    Sjödin, A., Street, N.R., Sandberg, G., Gustafsson, P., Jansson, S.: The populus genome integrative explorer (PopGenIE): a new resource for exploring the populus genome. New Phytol. 182, 1013–1025 (2009)Google Scholar
  14. 14.
    Nystedt, B., Street, N.R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D.G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, Å., Rilakovic, N., Ritland, C., Rosselló, J.A., Sena, J., Svensson, T., Talavera-López, C., Theißen, G., Tuominen, H., Vanneste, K., Wu, Z.-Q., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R., Bohlmann, J., Bousquet, J., Garcia Gil, R., Hvidsten, T.R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Lee Thompson, S., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P.K., Lundeberg, J., Jansson, S.: The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579 (2013)CrossRefGoogle Scholar
  15. 15.
    Norman, D.: The design of everyday things (1988)Google Scholar
  16. 16.
    Netotea, S., Sundell, D., Street, N.R., Hvidsten, T.R.: ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom. 15, 106 (2014)CrossRefGoogle Scholar
  17. 17.
    Mannapperuma, C.: Try to understand design and design process (2010)Google Scholar
  18. 18.
    Gibson, J.J.: Gibson theory of Affordances.pdf, Chap. Eight. In: The Theory of Affordances (1986)Google Scholar
  19. 19.
    Benyon, D., Crerar, A., Wilkinson, S.: Individual differences and inclusive design. In: User Interfaces for All: Concepts, Methods, and Tools (2001)Google Scholar
  20. 20.
    Lin, X.H., Choong, Y.-Y., Salvendy, G.: A proposed index of usability: a method for comparing the relative usability of different software systems. Behav. Inf. Technol. 16(4–5), 267–277 (1997)CrossRefGoogle Scholar
  21. 21.
    Nielsen, J., Pernice, K.: Eyetracking web usability (2010)Google Scholar
  22. 22.
    Croll, A., Power, S.: Complete web monitoring: watching your visitors, performance, communities, and competitors (2009)Google Scholar
  23. 23.
    Bekavac, I., Praničević, D.G.: Web analytics tools and web metrics tools: an overview and comparative analysis. Croat. Oper. Res. Rev. 6, 373–386 (2015)CrossRefGoogle Scholar
  24. 24.
    W3Techs - extensive and reliable web technology surveysGoogle Scholar
  25. 25.
    Bhatnagar, A.: Web analytics for business intelligence beyond hits and sessions. Online 33, 32–35 (2009)Google Scholar
  26. 26.
    Probets, S., Hasan, L., Morris, A.: Using google analytics to evaluate the usability of e-commerce sitesGoogle Scholar
  27. 27.
    Neilsan, J.: Designing web usability: the practice of simplicity. Interact. Mark. 1, 8–22 (2001).  https://doi.org/10.1057/palgrave.im.4340116Google Scholar
  28. 28.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefGoogle Scholar
  29. 29.
    Stein, L.D.: The generic genome browser: a building block for a model organism system database. Genome Res. 12(10), 1599–1610 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rosenbaum, S., Rohn, J.A., Humburg, J.: A toolkit for strategic usability. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2000 (2000)Google Scholar
  31. 31.
    Molich, R., Jeffries, R.: Comparative expert reviews (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chanaka Mannapperuma
    • 1
    Email author
  • Nathaniel Street
    • 1
  • John Waterworth
    • 2
  1. 1.Department of Plant PhysiologyUmeå Plant Science CentreUmeåSweden
  2. 2.Department of InformaticsUmeå UniversityUmeåSweden

Personalised recommendations