Advertisement

T Wave Alternans Analysis in ECG Signal: A Survey of the Principal Approaches

  • Nancy BetancourtEmail author
  • Carlos AlmeidaEmail author
  • Marco Flores-CaleroEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

The T wave alternans (TWA) is an important phenomenon not only within the clinical field but within the scientific and technological field, it has been considered an important, non-invasive, very promising indicator to stratify the risk of sudden cardiac death. Due to its microvolt amplitude and background noises, sophisticated signal processing techniques are required for its detection and estimation. In this paper we present a survey of the state of the art focusing to detect sudden cardiac death by analyzing the T wave on long-term ECG signals.

Keywords

ECG Sudden cardiac death T-wave analysis T-wave alternans 

References

  1. 1.
    Gimeno-Blanes, F.J., Blanco-Velasco, M., Barquero-Pérez, Ó., García-Alberola, A., Rojo-álvarez, J.L.: Sudden cardiac risk stratification with electrocardiographic indices - a review on computational processing, technology transfer, and scientific evidence. Front. Physiol. 7, 1–17 (2016)CrossRefGoogle Scholar
  2. 2.
    Narayan, S., Botteron, G., Smith, J.: T-wave alternans spectral magnitude is sensitive to electrocardiographic beat alignment strategy. 24(ii), 593–596 (1997)Google Scholar
  3. 3.
    Pham, Q., Quan, K.J., Rosenbaum, D.S.: T-wave alternans: marker, mechanism, and methodology for predicting sudden cardiac death. J. Electrocardiol. 36, 75–81 (2003)CrossRefGoogle Scholar
  4. 4.
    Monasterio, V., Clifford, G.D., Laguna, P., Martí Nez, J.P.: A multilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG. Ann. Biomed. Eng. 38(8), 2532–2541 (2010)CrossRefGoogle Scholar
  5. 5.
    World Health Organization: The top 10 causes of death (2014)Google Scholar
  6. 6.
    Shen, T.W., Tsao, Y.T.: An improved spectral method of detecting and quantifying T-wave alternans for SCD risk evaluation. Comput. Cardiol. 35, 609–612 (2008)Google Scholar
  7. 7.
    Ghoraani, B., Krishnan, S., Selvaraj, R.J., Chauhan, V.S.: T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization. Med. Eng. Phys. 33(6), 700–711 (2011)CrossRefGoogle Scholar
  8. 8.
    Valverde, E., Arini, P.: Study of T-wave spectral variance during acute myocardial ischemia, pp. 653–656 (2012)Google Scholar
  9. 9.
    Murukesan, L., Murugappan, M., Iqbal, M.: Sudden cardiac death prediction using ECG signal derivative (heart rate variability): a review, pp. 8–10 (2013)Google Scholar
  10. 10.
    INEC: Principales causas de mortalidadGoogle Scholar
  11. 11.
    Chugh, S.S.: Early identification of risk factors for sudden cardiac death. Nat. Rev. Cardiol. 7(6), 318 (2010)CrossRefGoogle Scholar
  12. 12.
    Irshad, A., Bakhshi, A.D., Bashir, S.: *Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan. **Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, pp. 222–227 (2015)Google Scholar
  13. 13.
    Blanco-Velasco, M., Cruz-Roldán, F., Godino-Llorente, J.I., Barner, K.E.: Nonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detection. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2402–2412 (2010)CrossRefGoogle Scholar
  14. 14.
    Martínez, J.P., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans. Biomed. Eng. 52(4), 599–613 (2005)CrossRefGoogle Scholar
  15. 15.
    Adam, D.R., Smith, J., Akselrod, S., Nyberg, S., Powell, A.O., Cohen, R.J.: Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocardiol. 17, 209–218 (1984)CrossRefGoogle Scholar
  16. 16.
    Haghjoo, M., Arya, A., Sadr-Ameli, M.A.: Microvolt T-wave alternans: a review of techniques, interpretation, utility, clinical studies, and future perspectives. Int. J. Cardiol. 109(3), 293–306 (2006)CrossRefGoogle Scholar
  17. 17.
    Nemati, S., Abdala, O., Monasterio, V., Yim-Yeh, S., Malhotra, A., Clifford, G.D.: A nonparametric surrogate-based test of significance for T-wave alternans detection. IEEE Trans. Biomed. Eng. 58(5), 1356–1364 (2011)CrossRefGoogle Scholar
  18. 18.
    Iravanian, S., Kanu, U.B., Christini, D.J.: A class of Monte-Carlo-based statistical algorithms for efficient detection of repolarization alternans. IEEE Trans. Biomed. Eng. 59(7), 1882–1891 (2012)CrossRefGoogle Scholar
  19. 19.
    Stroobandt, R.X., Barold, S.S., Sinnaeve, A.F.: ECG from basics to essentials: step by step (2016)Google Scholar
  20. 20.
    Tompkins, W.J.: Biomedical Digital Signal Processing: C-Language Examples and Laboratory Experiments for the IBM PC. Prentice Hall, Hauptbd (2000)Google Scholar
  21. 21.
    Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92(2), 541–549 (2002)CrossRefGoogle Scholar
  22. 22.
    Martínez, J.P., Olmos, S.: A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in Cardiology, pp. 677–680. IEEE (2002)Google Scholar
  23. 23.
    Bashir, S., Bakhshi, A.D., Maud, M.A.: A template matched-filter based scheme for detection and estimation of T-wave alternans. Biomed. Signal Process. Control 13(1), 247–261 (2014)CrossRefGoogle Scholar
  24. 24.
    Fujita, H., Acharya, U.R., Sudarshan, V.K., Ghista, D.N., Sree, S.V., Eugene, L.W.J., Koh, J.E.: Sudden Cardiac Death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. J. 43, 510–519 (2016)CrossRefGoogle Scholar
  25. 25.
    Gualsaqui Miranda, M.V., Vizcaino Espinosa, I.P., Flores Calero, M.J.: ECG signal features extraction. Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2016)Google Scholar
  26. 26.
    Goya-Esteban, R., Barquero-Perez, O., Blanco-Velasco, M., Caamano-Fernandez, A.J., Garcia-Alberola, A., Rojo-Alvarez, J.L.: Nonparametric signal processing validation in T-wave alternans detection and estimation. IEEE Trans. Biomed. Eng. 61(4), 1328–1338 (2014)CrossRefGoogle Scholar
  27. 27.
    Cuesta-Frau, D., Micó-Tormos, P., Aboy, M., Biagetti, M.O., Austin, D., Quinteiro, R.A.: Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study. Med. Biol. Eng. Comput. 47(3), 323–331 (2009)CrossRefGoogle Scholar
  28. 28.
    Smith, J.M., Clancy, E.A., Valeri, C.R., Ruskin, J.N., Cohen, R.J.: Electrical alternans and cardiac electrical instability. Circulation 77(1), 110–121 (1988)CrossRefGoogle Scholar
  29. 29.
    Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004), 437–440 (1991)CrossRefGoogle Scholar
  30. 30.
    Burattini, L., Zareba, W., Couderc, J., Titlebaum, E., Moss, A.: Computer detection of non-stationary T wave alternans using a new correlation method. In: Computers in Cardiology, pp. 657–660. IEEE (1997)Google Scholar
  31. 31.
    Noohi, M., Sadr, A.: T wave detection by correlation method in the ECG signal. In: The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol. 5, pp. 550–552 (2010)Google Scholar
  32. 32.
    Laguna, P., Ruiz, M., Moody, G., Mark, R.: Repolarization alternans detection using the KL transform and the beatquency spectrum. In: Computers in Cardiology, pp. 673–676. IEEE (1996)Google Scholar
  33. 33.
    Martinez, J.P., Olmos, S., Laguna, P.: Simulation study and performance evaluation of T-wave alternans detector. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 2291–2297. IEEE (2000)Google Scholar
  34. 34.
    Srikanth, T., Lin, D., Kanaan, N., Gu, H.: Presence of T wave alternans in the statistical context-a new approach to low amplitude alternans measurement. Comput. Cardiol. 29, 681–684 (2002)CrossRefGoogle Scholar
  35. 35.
    Strumillo, P., Ruta, J.: Poincare mapping for detecting abnormal dynamics of cardiac repolarization. IEEE Eng. Med. Biol. Mag. 21(1), 62–65 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador
  2. 2.Departamento de Ciencias ExactasUniversidad de las Fuerzas Armadas - ESPEQuitoEcuador
  3. 3.Departamento de MatemáticaEscuela Politécnica NacionalQuitoEcuador
  4. 4.Department of Intelligent SystemsI&H TechLatacunga (Cotopaxi)Ecuador
  5. 5.Universidad de las Fuerzas Armadas - ESPEQuitoEcuador

Personalised recommendations