A Review on Two Methods to Detect Spatio-Temporal Patterns in Wind Turbines

  • Soledad Le ClaincheEmail author
  • José M. Vega
  • Xuerui Mao
  • Esteban Ferrer
Part of the Springer Tracts in Mechanical Engineering book series (STME)


This Chapter presents a review on two methods for the analysis of flow structures in wind turbines. These methods are higher order dynamic mode decomposition and spatio-temporal Koopman decomposition, which are highly efficient tools suitable for the detection of spatio-temporal patterns in complex flows. These two techniques have been applied to detect the main flow structures in a cross-flow wind turbine in turbulent regime, and in an horizontal wind turbine, which is laminar in the near field but transitioning to turbulence in the far field. Using these methods, a reduced number of traveling waves which are responsible for triggering the flow transition, are able to describe the aforementioned complex flows.


Wind turbines Flow structures DMD HODMD STKD 


  1. 1.
    Ferrer E, Le Clainche S (2015) Flow scales in cross-flow turbines. In: Ferrer E, Montlaur A (eds) CFD for wind and tidal offshore turbines, Chap1. Springer Tracts in Mechanical Engineering, pp 1–11Google Scholar
  2. 2.
    Le Clainche S, Ferrer E (2018) A reduced order model to predict transient flows around straight bladed vertical axis wind turbines. Energies 11(3):566CrossRefGoogle Scholar
  3. 3.
    Ramos G, Beltrán V, Le Clainche S, Ferrer E, Vega JM (2018) Flow structures in the turbulent wake of a cross-flow wind turbine. In: AIAA SciTech forum, wind energy symposium, AIAA paper-2018-0253.
  4. 4.
    Le Clainche S, Mao X, Vega JM (2018) Traveling waves describing the wake of a wind turbine. Wind Energy (under review)Google Scholar
  5. 5.
    Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28MathSciNetCrossRefGoogle Scholar
  6. 6.
    Le Clainche S, Vega JM (2017) Higher order dynamic mode decomposition. SIAM J Appl Dyn Syst 16(2):882–925MathSciNetCrossRefGoogle Scholar
  7. 7.
    Le Clainche S, Vega JM (2017) Spatio-temporal Koopman decomposition. Submitted to J Nonlinear SciGoogle Scholar
  8. 8.
    Le Clainche S, Vega JM, Soria J (2017) Higher order dynamic mode decomposition for noisy experimental data: the flow structure of a zero-net-mass-flux jet. Exp Therm Fluid Sci 88:336–353CrossRefGoogle Scholar
  9. 9.
    Le Clainche S, Vega JM (2017) Higher order dynamic mode decomposition to identify flow patterns and extrapolation properties. Phys Fluids 29(8):084102CrossRefGoogle Scholar
  10. 10.
    Le Clainche S, Moreno R, Taylor P, Vega JM (2018) New robust method to study flight flutter testing. J Aircraft (in press)Google Scholar
  11. 11.
    Sirovich L (1987) Turbulence and the dynamic of coherent structures, parts I–III. Q Appl Math 45(3):561CrossRefGoogle Scholar
  12. 12.
    Tucker LR (1996) Some mathematical notes on three-mode factor analysis. Psikometrica 31:279–311MathSciNetCrossRefGoogle Scholar
  13. 13.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young L-S (eds) Lecture notes in mathematics. Springer, Berlin, pp 366–381Google Scholar
  14. 14.
    Ferrer E (2017) An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large Eddy simulations. J Comput Phys 348:754–775MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ferrer E, Willden RHJ (2010) A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations. Comput Fluids 46(1):224–230MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ferrer E, Willden RHJ (2012) A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes. J Comput Phys 231(21):7037–7056MathSciNetCrossRefGoogle Scholar
  17. 17.
    Le Clainche S, Sastre F, Vega JM, Velazquez A (2017) Higher order dynamic mode decomposition applied to study flow structures in noisy PIV experimental data AIAA 2017-3304. In: Proceedings of 47th AIAA fluid dynamics conference. Denver, CO, USA, 5–9 JuneGoogle Scholar
  18. 18.
    Mao X, Sorensen J (2018) Far-wake meandering induced by atmospheric eddies in flow past a wind turbine. J Fluid Mech 846:190–209MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soledad Le Clainche
    • 1
    Email author
  • José M. Vega
    • 1
  • Xuerui Mao
    • 2
  • Esteban Ferrer
    • 1
  1. 1.School of Aerospace EngineeringUniversidad Politécnica de MadridMadridSpain
  2. 2.Faculty of EngineeringThe University of NottinghamNottinghamUK

Personalised recommendations