Advertisement

An a Posteriori Very Efficient Hybrid Method for Compressible Flows

  • Javier Fernández-FidalgoEmail author
  • Xesús Nogueira
  • Luis Ramírez
  • Ignasi Colominas
Chapter
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

In this work we present a framework for a high-order hybrid method made up of an explicit finite-difference scheme and a member of the Weighted Essentially Non-Oscillatory (WENO) family. A new a posteriori switching criterion is developed based on the Multidimensional Optimal Order Detection (MOOD) method. The schemes tested here are chosen to illustrate the process, we select non-standard fourth order finite difference and fifth order compact and non-compact WENO, but any other combination of central finite differences and upwind schemes could be used as well. In this work we present a one-dimensional and a two-dimensional case to illustrate the speed, accuracy and shock-capturing properties of the proposed schemes.

Keywords

High-order schemes Compressible flows Finite differences Curvilinear grids A posteriori WENO Hybrid 

References

  1. 1.
    Costa B, Don WS (2007) High order hybrid central-WENO finite difference scheme for conservation laws. J Comput Appl Math 204(2):209–218MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Pirozzoli S (2002) Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys 178(1):81–117MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hu XY, Wang B, Adams NA (2015) An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J Comput Phys 301:415–424MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Clain S, Diot S, Loubère R (2011) A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J Comput Phys 230(10):4028–4050MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Diot S, Clain S, Loubère R (2012) Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput Fluids 64:43–63MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Vinokur M (1974) Conservation equations of gasdynamics in curvilinear coordinate systems. J Comput Phys 14(2):105–125MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Visbal MR, Gaitonde DV (1999) High-order-accurate methods for complex unsteady subsonic flows. AIAA J 37(10):1231–1239CrossRefGoogle Scholar
  8. 8.
    Ghosh D, Baeder JD (2012) Compact reconstruction schemes with weighted eno limiting for hyperbolic conservation laws. SIAM J Sci Comput 34(3):A1678–A1706MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(1):202–228MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bogey C, Bailly C (2002) A family of low dispersive and low dissipative explicit schemes for computing aerodynamic noise. In: 8th AIAA/CEAS aeroacoustics conference exhibit. American Institute of Aeronautics and AstronauticsGoogle Scholar
  11. 11.
    Visbal MR, Gaitonde DV (1998) High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Air Force Research Lab Wright-Patterson, Air Vehicles DirectorateGoogle Scholar
  12. 12.
    Johnsen E, Larsson J, Bhagatwala AV, Cabot WH, Moin P, Olson BJ, Rawat PS, Shankar SK, Sjögreen B, Yee HC, Zhong X, Lele SK (2010) Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J Comput Phys 229(4):1213–1237MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Adams NA, Shariff K (1996) A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J Comput Phys 127(1):27–51MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Henrick AK, Aslam TD, Powers JM (2005) Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J Comput Phys 207(2):542–567zbMATHCrossRefGoogle Scholar
  15. 15.
    Dumbser M, Zanotti O, Loubère R, Diot S (2014) A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J Comput Phys 278:47–75MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nogueira X, Ramírez L, Clain S, Loubère R, Cueto-Felgueroso L, Colominas I (2016) High-accurate SPH method with multidimensional optimal order detection limiting. Comput Methods Appl Mech Eng 310:134–155MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fernández-Fidalgo J, Nogueira X, Ramírez L, Colominas I (2018) An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows. Comput Methods Appl Mech Eng 335:91–127MathSciNetCrossRefGoogle Scholar
  18. 18.
    Figueiredo J, Clain S (2015) Second-order finite volume mood method for the shallow water with dry/wet interface. In: SYMCOMPGoogle Scholar
  19. 19.
    Hu XY, Adams NA, Shu CW (2012) Positivity-preserving flux limiters for high-order conservative schemes. J Comput Phys 242:169–180CrossRefGoogle Scholar
  20. 20.
    Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Liepmann HW, Roshko A (1959) Elements of gasdynamics. Wiley, New York. ISBN: 978-0486419633Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Fernández-Fidalgo
    • 1
    Email author
  • Xesús Nogueira
    • 1
  • Luis Ramírez
    • 1
  • Ignasi Colominas
    • 1
  1. 1.Universidade da Coruña, Group of Numerical Methods in EngineeringA CoruñaSpain

Personalised recommendations