Smart System for Monitoring Apnea Episodes in Domestic Environments with Sound Sensor

  • Javier Rocher
  • Lorena Parra
  • Sandra Sendra
  • Jaime LloretEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 914)


The Obstructive Sleep Apnea (OSA) is a disorder that causes frequent pauses in breathing during sleep. This disorder can cause early death, hypertension, etc. Approximately the 4% of the population suffers this disorder. In order to diagnose, it is required a polysomnography (PSG) which s is an expensive test and requires the patient’s hospitalization for at least one night This paper presents a system able to detect the OSA during sleep. Our system consists of a sound sensor, a vibrating element and a microcontroller to process the collected data. The sound sensor is placed in the pillow and includes a vibrating element that wakes the user when the OSA event is too long. The sensor and actuator are connected to a microcontroller which includes an IEEE 802.11 interface to be connected to an Access Point (AP). The collected values are processed and sent to a database. The system works analyzing the sound of snoring. Our system can difference 5 different types of snoring: (I) no snoring, (II) movement (III) normal snoring, (IV) snoring before OSA, and (V) OSA. After that, the values of OSA events are checked by the doctor to take, if needed, the appropriate actions. The results show that we can differentiate the different snoring types thanks to the sound level and the distribution curve. Finally, the system has been verified with a patient with OSA diagnosis and our results coincide with the type of diagnosis and type of snoring that the patient received in his medical report.


Obstructive Sleep Apnea Wireless Sensor Network (WSN) Snore E-health 



This work has been partially supported by the “Conselleria d’Educació, Investigació, Cultura i Esport” through the “Subvenciones para la contratación de personal investigator de carácter predoctoral (Convocatoria 2017)” Grant number ACIF/2017/069, by the “Ministerio de Educación, Cultura y Deporte”, through the “Ayudas para contratacion predoctoral de Formación del Profesorado Universitario FPU (Convocatoria 2014)”. Grant number FPU14/02953.


  1. 1.
    World Health Organization: Obstructive sleep apnea syndrome. Accessed 20 Apr 2018
  2. 2.
    Malhotra, A., White, D.P.: Obstructive sleep apnea. Lancet 360(9328), 237–245 (2002)CrossRefGoogle Scholar
  3. 3.
    Grunstein, R.R., Hedner, J., Grote, L.: Treatment options for sleep apnea. Drugs 61(2), 237–251 (2001)CrossRefGoogle Scholar
  4. 4.
    Franklin, K.A., Lindberg, E.: Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J. Thorac. Dis. 7(8), 1311–1322 (2015)Google Scholar
  5. 5.
    Bsoul, M., Minn, H., Tamil, L.: Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 15(3), 416–427 (2011)CrossRefGoogle Scholar
  6. 6.
    Gharibeh, T., Mehra, R.: Obstructive sleep apnea syndrome: natural history, diagnosis, and emerging treatment options. Nat. Sci. Sleep 2, 233–255 (2010)Google Scholar
  7. 7.
    American Association of Sleep Technologists: Technical Guideline - Standard Polysomnography, pp. 1–19, July 2012Google Scholar
  8. 8.
    Lee, L.A., et al.: Snoring sounds predict obstruction sites and surgical response in patients with obstructive sleep apnea hypopnea syndrome. Sci. Rep. 6, 1–11 (2016)CrossRefGoogle Scholar
  9. 9.
    Kim, J.W., Lee, C.H., Rhee, C.S., Mo, J.H.: Relationship between snoring intensity and severity of obstructive sleep apnea. Clin. Exp. Otorhinolaryngol. 8(4), 376–380 (2015)CrossRefGoogle Scholar
  10. 10.
    Alakuijala, A., Salmi, T.: Predicting obstructive sleep apnea with periodic snoring sound recorded at home. J. Clin. Sleep Med. 12(7), 953–958 (2016)CrossRefGoogle Scholar
  11. 11.
    Jin, H., et al.: Acoustic analysis of snoring in the diagnosis of obstructive sleep apnea syndrome: a call for more rigorous studies. J. Clin. Sleep Med. 11(7), 765–771 (2015)Google Scholar
  12. 12.
    Oller Arcas, T., Lopez Rubio, J., Alcober Segura, J., Tarín, G., Rosas, L., Garcia, J.: Adherence to a treatment of cranial deformities with a sensorised brace device. Netw. Protoc. Algorithms 8(1), 73–89 (2016)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Han, W., Xiao, Y.: Enhancements of temporal accountability in medical sensor networks. Ad Hoc Sens. Wirel. Netw. 37(1–4), 71–93 (2017)Google Scholar
  14. 14.
    Bri, D., Garcia, M., Lloret, J., Dini, P.: Real deployments of wireless sensor networks. In: 3rd International Conference on Sensor Technologies and Applications, SENSORCOMM 2009, IARA, Athens/Glyfada, Greece, pp. 415–423 (2009)Google Scholar
  15. 15.
    García, L., Parra, L., Romero, O., Lloret, J.: System for monitoring the wellness state of people in domestic environments employing emoticon-based HCI. J. Supercomput., 1–25 (2017)Google Scholar
  16. 16.
    Yan, H., Huo, H., Xu, Y., Gidlund, M.: Wireless sensor network based E-health system: implementation and experimental results. IEEE Trans. Consum. Electron. 56(4), 2288–2295 (2010)CrossRefGoogle Scholar
  17. 17.
    Veiga, A., García, L., Parra, L., Lloret, J., Augele, V.: An IoT-based smart pillow for sleep quality monitoring in AAL environments. In: 3rd IEEE Fog & Mobile Edge Computing (FMEC 2018), Barcelona, Spain (2018)Google Scholar
  18. 18.
    Rghioui, A., Sendra, S., Lloret, J., Oumnad, A.: Internet of Things for measuring human activities in ambient assisted living and e-health. Netw. Protoc. Algorithms 8(3), 15–28 (2016)CrossRefGoogle Scholar
  19. 19.
    Santos-Silva, R., et al.: Validation of a portable monitoring system for the diagnosis of obstructive sleep apnea syndrome. Sleep 32(5), 629–636 (2009)CrossRefGoogle Scholar
  20. 20.
    Nakano, H., et al.: Monitoring sound to quantify snoring and sleep apnea severity using a smartphone: proof of concept. J. Clin. Sleep Med. 10(1), 73–78 (2014)Google Scholar
  21. 21.
    Yadollahi, A., Giannouli, E., Moussavi, Z.: Sleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signals. Med. Biol. Eng. Comput. 48(11), 1087–1097 (2010)CrossRefGoogle Scholar
  22. 22.
    Castro, I.D., Varon, C., Torfs, T., van Huffel, S., Puers, R., van Hoof, C.: Evaluation of a multichannel non-contact ECG system and signal quality algorithms for sleep apnea detection and monitoring. Sensors 18(2), 1–20 (2018)CrossRefGoogle Scholar
  23. 23.
    Vilches, R., Oller, T., Alcober, J.: Pervasive sensors network for wellness based-on Raspberry Pi. Netw. Protoc. Algorithms 6(3), 1–17 (2014)CrossRefGoogle Scholar
  24. 24.
    Ammari, H.M., Gomes, N., Jacques, M., Maxim, B., Yoon, D.: A survey of sensor network applications and architectural components. Adhoc Sens. Wirel. Netw. 25(1–2), 1–44 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Rocher
    • 1
  • Lorena Parra
    • 1
  • Sandra Sendra
    • 1
    • 2
  • Jaime Lloret
    • 1
    Email author
  1. 1.Instituto de Investigación para la Gestión Integrada de zonas CosterasUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Dep. de teoría de la señal, telemática y comunicaciones, ETS Ingenierías Informática y de TelecomunicaciónUniversidad de GranadaGranadaSpain

Personalised recommendations