Optimization Algorithms Applied to Anaerobic Digestion Process of Olive Mill Wastewater

Literature Review
  • Echarrafi KhadijaEmail author
  • Zouitina Manale
  • El Hassani Ibtisam
  • El Hajji Mounia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 913)


Agriculture has always been a strategic sector for socioeconomic development in Morocco. Indeed, the green Morocco plan aims to extend the area of olive trees and set up new modern crushing plants in order to increase productivity and competitiveness of the olive industry. Olive mill solid waste (OMSW) and olive mill wastewater (OMW) are two types of waste generated by this industry. These wastes are rich in organic matter, but their discharge without pretreatment in nature has a toxic effect on the natural environment (soil, air, and water) because of their high acidity due to their polyphenol content.

White Biotechnology, particularly anaerobic digestion (AD), remains an effective way that uses the effluents mentioned above as a raw material for producing a renewable energy such as biogas (CH4). The aim of this work is to present a literature review of anaerobic digestion process, its influencing parameters as well as optimization algorithms used for optimizing the process and predicting gas yield.


OMW Anaerobic digestion Optimization algorithms 


  1. 1.
    Dareioti, M.A., Dokianakis, S.N., Stamatelatou, K., Zafiri, C., Kornaros, M.: Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manag. 30(10), 1841–1848 (2010)CrossRefGoogle Scholar
  2. 2.
    Etude sur les potentiels de biomasse pour la région Souss-Massa-Drâa et la province d’Essaouira (2010)Google Scholar
  3. 3.
    Elamin, P.A.M.: Potentiel des déchets organiques et valorisation énergétique au MarocGoogle Scholar
  4. 4.
    Ministère de l’agriculture, de la pêche maritime, du développement rural et des eaux et des forêts.
  5. 5.
    Idrissi, M.: Trituration des olives : comment arrêter la pollution par les margines (2016).
  6. 6.
    Benyahia, N., Zein, K.: Analyse des problèmes de l’industrie de l’huile d’olive et solutions récemment développées, Sustain. Bus. Assoc. Lausanne, pp. 1–8 (2003)Google Scholar
  7. 7.
    Examen national de l’export vert du Maroc : produits oléicoles, romarin et thym (2017)Google Scholar
  8. 8.
    Moletta, R.: La méthanisation. Tec et Doc (2015)Google Scholar
  9. 9.
    Béline, F., Girault, R., Peu, P., Trémier, A., Téglia, C., Dabert, P.: Enjeux et perspectives pour le développement de la méthanisation agricole en France. Sci. Eaux Territ. 2, 34–43 (2012)Google Scholar
  10. 10.
    Robles, A., Lucas, R., de Cienfuegos, G.A., Gálvez, A.: Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds. Bioresour. Technol. 74(3), 217–221 (2000)CrossRefGoogle Scholar
  11. 11.
    Hamdi, M.: Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioprocess. Eng. 8(5–6), 209–214 (1993)CrossRefGoogle Scholar
  12. 12.
    Beccari, M., Majone, M., Torrisi, L.: Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Sci. Technol. 38(4–5), 53–60 (1998)CrossRefGoogle Scholar
  13. 13.
    Lesage-Meessen, L., et al.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75(4), 501–507 (2001)CrossRefGoogle Scholar
  14. 14.
    Martinez-Garcia, G., Johnson, A.C., Bachmann, R.T., Williams, C.J., Burgoyne, A., Edyvean, R.G.J.: Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int. Biodeterior. Biodegradation 59(4), 273–282 (2007)CrossRefGoogle Scholar
  15. 15.
    Blika, P.S., et al.: Pretreatment of olive mill wastewater in a fungal trickling filter In: Proceedings of the Third International Conference on Water Resources in Mediterranean Basin, Tripoli, Lebanon (2006)Google Scholar
  16. 16.
    Fountoulakis, M.S., Dokianakis, S.N., Kornaros, M.E., Aggelis, G.G., Lyberatos, G.: Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36(19), 4735–4744 (2002)CrossRefGoogle Scholar
  17. 17.
    Lettinga, G., et al.: High-rate anaerobic waste-water treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol. Genet. Eng. Rev. 2(1), 253–284 (1984)CrossRefGoogle Scholar
  18. 18.
    Ziganshin, A.M., Liebetrau, J., Pröter, J., Kleinsteuber, S.: Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl. Microbiol. Biotechnol. 97(11), 5161–5174 (2013)CrossRefGoogle Scholar
  19. 19.
    Labatut, R.A., Angenent, L.T., Scott, N.R.: Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res. 53, 249–258 (2014)CrossRefGoogle Scholar
  20. 20.
    Labatut, R.A., Gooch, C.A.: Monitoring of anaerobic digestion process to optimize performance and prevent system failure (2014)Google Scholar
  21. 21.
    Mackie, R.I., Bryant, M.P.: Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures. Appl. Microbiol. Biotechnol. 43(2), 346–350 (1995)CrossRefGoogle Scholar
  22. 22.
    Varel, V.H., Isaacson, H.R., Bryant, M.P.: Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33(2), 298–307 (1977)Google Scholar
  23. 23.
    Borja, R., Martin, A., Banks, C.J., Alonso, V., Chica, A.: A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environ. Pollut. 88(1), 13–18 (1995)CrossRefGoogle Scholar
  24. 24.
    Wijekoon, K.C., Visvanathan, C., Abeynayaka, A.: Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 102(9), 5353–5360 (2011)CrossRefGoogle Scholar
  25. 25.
    Lee, D.-J., et al.: Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea. J. Chem. 2015, 9 (2015)Google Scholar
  26. 26.
    Siegert, I., Banks, C.: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 40(11), 3412–3418 (2005)CrossRefGoogle Scholar
  27. 27.
    Beccari, M., Bonemazzi, F., Majone, M., Riccardi, C.: Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res. 30(1), 183–189 (1996)CrossRefGoogle Scholar
  28. 28.
    Wong, Y.-S., Teng, T.T., Ong, S.-A., Norhashimah, M., Rafatullah, M., Lee, H.-C.: Anaerobic acidogenesis biodegradation of palm oil mill effluent using suspended closed anaerobic bioreactor (SCABR) at mesophilic temperature. Procedia Environ. Sci. 18, 433–441 (2013)CrossRefGoogle Scholar
  29. 29.
    Mechichi, T., Sayadi, S.: Evaluating process imbalance of anaerobic digestion of olive mill wastewaters. Process Biochem. 40(1), 139–145 (2005)CrossRefGoogle Scholar
  30. 30.
    Veeken, A., Kalyuzhnyi, S., Scharff, H., Hamelers, B.: Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 126(12), 1076–1081 (2000)CrossRefGoogle Scholar
  31. 31.
    Ağdağ, O.N., Sponza, D.T.: Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochem. 40(5), 1871–1879 (2005)CrossRefGoogle Scholar
  32. 32.
    Zhang, S.J., Liu, N.R., Zhang, C.X.: Study on the performance of modified UASB process treating sewage. Adv. Mater. Res. 610, 2174–2178 (2013)Google Scholar
  33. 33.
    Mattocks, R.: Understanding biogas generation (1984)Google Scholar
  34. 34.
    Trnovec, W., Britz, T.J.: Influence of organic loading rate and hydraulic retention time on the efficiency of a UASB bioreactor treating a canning factory effluent. Water S. A. 24(2), 147–152 (1998)Google Scholar
  35. 35.
    Babaee, A., Shayegan, J.: Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. In: World Renewable Energy Congress-Sweden, 8–13 May 2011, Linköping Sweden, no. 57, pp. 411–417 (2011)Google Scholar
  36. 36.
    Li, Y., Park, S.Y., Zhu, J.: Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 15(1), 821–826 (2011)CrossRefGoogle Scholar
  37. 37.
    Yen, H.-W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98(1), 130–134 (2007)CrossRefGoogle Scholar
  38. 38.
    Habiba, L., Hassib, B., Moktar, H.: Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour. Technol. 100(4), 1555–1560 (2009)CrossRefGoogle Scholar
  39. 39.
    Lin, J., et al.: Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23(8), 1403–1408 (2011)CrossRefGoogle Scholar
  40. 40.
    Hernández-Berriel, M.C., Márquez-Benavides, L., González-Pérez, D.J., Buenrostro-Delgado, O.: The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Manag. 28, S14–S20 (2008)CrossRefGoogle Scholar
  41. 41.
    Fujishima, S., Miyahara, T., Noike, T.: Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Sci. Technol. 41(3), 119–127 (2000)CrossRefGoogle Scholar
  42. 42.
    Munasinghe, R.: Effect of hydraulic retention time on landfill leachate and gas characteristics. University of British Columbia (1997)Google Scholar
  43. 43.
    Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000)CrossRefGoogle Scholar
  44. 44.
    Bro, R., Smilde, A.K.: Principal component analysis. Anal. Methods 6(9), 2812–2831 (2014)CrossRefGoogle Scholar
  45. 45.
    Gen, M., Cheng, R., Lin, L.: Network models and optimization: multiobjective genetic algorithm approach. Springer Science & Business Media (2008)Google Scholar
  46. 46.
    Batstone, D.J., et al.: The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)CrossRefGoogle Scholar
  47. 47.
    Akkurt, S., Tayfur, G., Can, S.: Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 34(8), 1429–1433 (2004)CrossRefGoogle Scholar
  48. 48.
    Qdais, H.A., Hani, K.B., Shatnawi, N.: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 54(6), 359–363 (2010)CrossRefGoogle Scholar
  49. 49.
    Kana, E.B.G., Oloke, J.K., Lateef, A., Adesiyan, M.O.: Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 46, 276–281 (2012)CrossRefGoogle Scholar
  50. 50.
    Li, H., et al.: Estimating the fates of C and N in various anaerobic codigestions of manure and lignocellulosic biomass based on artificial neural networks. Energy Fuels 30(11), 9490–9501 (2016)CrossRefGoogle Scholar
  51. 51.
    Tay, J.-H., Zhang, X.: A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 34(11), 2849–2860 (2000)CrossRefGoogle Scholar
  52. 52.
    Parker, W.J.: Application of the ADM1 model to advanced anaerobic digestion. Bioresour. Technol. 96(16), 1832–1842 (2005)CrossRefGoogle Scholar
  53. 53.
    Boubaker, F., Ridha, B.C.: Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1). Bioresour. Technol. 99(14), 6565–6577 (2008)CrossRefGoogle Scholar
  54. 54.
    Turkdogan-Aydınol, F.I., Yetilmezsoy, K.: A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J. Hazard. Mater. 182(1–3), 460–471 (2010)CrossRefGoogle Scholar
  55. 55.
    Puñal, A., Palazzotto, L., Bouvier, J.C., Conte, T., Steyer, J.P.: Automatic control of volatile fatty acids in anaerobic digestion using a fuzzy logic based approach. Water Sci. Technol. 48(6), 103–110 (2003)CrossRefGoogle Scholar
  56. 56.
    Rao, K.R., Srinivasan, T., Venkateswarlu, C.: Mathematical and kinetic modeling of biofilm reactor based on ant colony optimization. Process Biochem. 45(6), 961–972 (2010)CrossRefGoogle Scholar
  57. 57.
    Garlapati, V.K., Banerjee, R.: Evolutionary and swarm intelligence-based approaches for optimization of lipase extraction from fermented broth. Eng. Life Sci. 10(3), 265–273 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Echarrafi Khadija
    • 1
    Email author
  • Zouitina Manale
    • 1
  • El Hassani Ibtisam
    • 1
  • El Hajji Mounia
    • 1
  1. 1.ENSEMHassan II UniversityCasablancaMorocco

Personalised recommendations