Advertisement

A Cellular Automata Model of Spatio-Temporal Distribution of Species

  • João BiocoEmail author
  • João Silva
  • Fernando Canovas
  • Paulo Fazendeiro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 913)

Abstract

Cellular automata (CA) are discrete models used in several studies due to the capacity to simulate dynamic systems and analyze their behavior. One of the applications of CA in ecology is in the analysis of the spatial distribution of species, where simulation models are created in order to study the response of ecological systems to different kinds of exogenous or endogenous perturbations. In this study we describe an implementation of a cellular automata model able to incorporate environmental data from different sources. To the user is given the power to produce and analyze different scenarios by combining the available variables at will. We present a case study where, departing from a generalized additive model, a possible explanation is given for the distribution of two haplotypes of honeybees along Iberian Peninsula. The results of our model are compared and discussed at the light of the real data collected on the terrain.

Keywords

Environmental modeling Cellular automata Modeling tools Species distribution models 

References

  1. 1.
    Khan, A.R.: Replacement of some graphics routines with the help of 2D cellular Automata Algorithms for faster graphics operations (2015)Google Scholar
  2. 2.
    Cissé, B., El Yacoubi, S., Gourbiére, S.: A cellular automaton model for the transmission of Chagas disease in heterogeneous landscape and host community. Appl. Math. Model. 40(2), 782–794 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Markham, C.G.: Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60(3), 593–597 (1970)CrossRefGoogle Scholar
  4. 4.
    Burks, C., Farmer, D.: Towards modeling DNA sequences as automata. Physica D: Nonlinear Phenomena 10(1–2), 157–167 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canovas, F., De la Rúa, P., Serrano, J., Galián, J.: Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). J. Zool. Syst. Evol. Res. 46(1), 24–30 (2008)Google Scholar
  6. 6.
    Keshtkar, H., Voigt, W.: Potential impacts of climate and landscape fragmentation changes on plant distributions: coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecol. Inform. 32, 145–155 (2016)CrossRefGoogle Scholar
  7. 7.
    Régnière, J., Saint-Amant, R., Béchard, A.: BioSim: optimizing pest control efficacy in forestry. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre. Branching out (3), 2 (2003)Google Scholar
  8. 8.
    Conway, J.: The game of life. Sci. Am. 223(4), 4 (1970)Google Scholar
  9. 9.
    Von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)Google Scholar
  10. 10.
    Bhattacharjee, K., Naskar, N., Roy, S., Das, S.: A survey of cellular automata: types, dynamics, non-uniformity and applications. arXiv preprint arXiv:1607.02291 (2016)
  11. 11.
    Pinto, N., Antunes, A.P., Roca, J.: Applicability and calibration of an irregular cellular automata model for land use change. Comput. Environ. Urban Syst. 65, 93–102 (2017)CrossRefGoogle Scholar
  12. 12.
    Linh, O.T.M., Huong, L.H., Quy, L.T., Huy, N.C., Hiep, H.X.: Simulation the BPH spread with the impact of their natural enemies based on Cellular Automata and Predator-Prey model. In: 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), pp. 121–126. IEEE (2016)Google Scholar
  13. 13.
    Hewitt, R., Diaz-Pacheco, J.: Stable models for metastable systems? Lessons from sensitivity analysis of a Cellular Automata urban land use model. Comput. Environ. Urban Syst. 62, 113–124 (2017)CrossRefGoogle Scholar
  14. 14.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005)CrossRefGoogle Scholar
  15. 15.
    Engler, R., Guisan, A.: MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15(4), 590–601 (2009)CrossRefGoogle Scholar
  16. 16.
    Mitra, S., Das, S., Chaudhuri, P.P., Nandi, S.: Architecture of a VLSI chip for modelling amino acid sequence in proteins. In: Proceedings of the Ninth International Conference on VLSI Design, pp. 316-317. IEEE (1996)Google Scholar
  17. 17.
    Palmate, S.S.: Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Appl. Geogr. 82, 11–23 (2017)CrossRefGoogle Scholar
  18. 18.
    Ghosh, S., Bachhar, T., Maiti, N.S., Mitra, I., Chaudhuri, P.P.: Theory and application of equal length cycle cellular automata (ELCCA) for enzyme classification. In: International Conference on Cellular Automata, pp. 46–57. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Holko, A., Mȩdrek, M., Pastuszak, Z., Phusavat, K.: Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Syst. Appl. 48, 1–8 (2016)CrossRefGoogle Scholar
  21. 21.
    Barbosa, N.P., Ferreira, J.A., Nascimento, C.A., Silva, F.A., Carvalho, V.A., Xavier, E.R., Cardoso, A.V.: Prediction of future risk of invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with cellular automata. Ecol. Indic. 92, 30–39 (2018)CrossRefGoogle Scholar
  22. 22.
    Mahmoud, H., Chulahwat, A.: A probabilistic cellular automata framework for assessing the impact of WUI fires on communities. Procedia Eng. 198, 1111–1122 (2017)CrossRefGoogle Scholar
  23. 23.
    Guimapi, R.Y., Mohamed, S.A., Okeyo, G.O., Ndjomatchoua, F.T., Ekesi, S., Tonnang, H.E.: Modeling the risk of invasion and spread of Tuta absoluta in Africa. Ecol. Complex. 28, 77–93 (2016)CrossRefGoogle Scholar
  24. 24.
    Pereira, F.M.M., Schimit, P.H.T.: Dengue fever spreading based on probabilistic cellular automata with two lattices. Phys. A Stat. Mech. Appl. 499, 75–87 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João Bioco
    • 1
    Email author
  • João Silva
    • 1
  • Fernando Canovas
    • 2
  • Paulo Fazendeiro
    • 1
  1. 1.Instituto de TelecomunicacoesUniversity of Beira InteriorCovilhaPortugal
  2. 2.Centro de Ciencias do MarUniversity of AlgarveAlgarvePortugal

Personalised recommendations