The Effect of Inoculation by Indigenous Endomycorrhizal Fungi on the Tolerance of Tetraclinis articulata Vahl masters Plants to Water Stress

  • Amal El KhaddariEmail author
  • Jalila Aoujdad
  • Younes Abbas
  • Abdenbi Zine El Abidine
  • Mohamed Ouajdi
  • Salwa El Antry
  • Jamila Dahmani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 911)


In this study, we examined several aspects related to water stress tolerance of Thuya (Tetraclinis articulata Vahl masters) inoculated with a native Arbuscular Mycorrhizal Fungi (AMF). The mycorrhizal and non-mycorrhizal Thuya were subjected to two water levels: under well-watered and under drought stress. Our results show that the AMF have a significant impact on biomass growth and the leaf water potential was also higher in stressed mycorrhizal plants (–18 bar), than in non-mycorrhizal plants (–41 bar). These AMF have also affected the water content, they have higher values compared to the control after 19 days of stress. These results confirm that inoculation with AMF can improve plant drought tolerance by increasing leaf water potential in mycorrhizal plants during drought, and can also provide a potential solution for the conservation and recovery of T. articulata in plants on natural ecosystems in Morocco.


Water stress Arbuscular Mycorrhizal Fungi Water stress tolerance Tetraclinis articulata Vahl masters Morocco 


  1. 1.
    Rikli, M.: Das Planzenkleid der Mittellmeerlander. Huber Berne 1, 1–41 (1943)Google Scholar
  2. 2.
    Quezel, P.: Biogéographique et écologie des conifères sur le pourtour Mediterranean. Impression: Actualité d’écologie forestière, pp. 205–256. Badras Edit, Paris (1980)Google Scholar
  3. 3.
    Quezel, P.: Réflexion sur l’évolution de la flore et de la végétation, au Maghreb Méditerranéen, p. 117. Ibis Press Edit, Paris (2000)Google Scholar
  4. 4.
    Bellakhadar, J.: La pharmacopée marocaine traditionnelle. Impressions DUMAS, Saint-Etienne (1997)Google Scholar
  5. 5.
    Boudy, P.: Guide du forestier en Afrique du Nord, vol. 273. La maison rustiqu, Paris (1952)Google Scholar
  6. 6.
    Haut commisseriat des eaux et forêts, Le thuya de Berbérie. Accessed 12 Oct 2017
  7. 7.
    Denby, K.: Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol. 23, 547–552 (2005)CrossRefGoogle Scholar
  8. 8.
    Kramer, P.: Water Relations of Plants and Soils. Academic Press, San Diego (1995)Google Scholar
  9. 9.
    Ruiz-Lozano, J.M.: Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13, 309–317 (2003)CrossRefGoogle Scholar
  10. 10.
    Augé, R.M.: Foliar dehydration tolerance of mycorrhizal cowpea, soybean and bush bean. New Phytol. 151, 535–541 (2001)CrossRefGoogle Scholar
  11. 11.
    Augé, R.M.: Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14, 85–92 (2004)CrossRefGoogle Scholar
  12. 12.
    Augé, R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42 (2001)CrossRefGoogle Scholar
  13. 13.
    Subramanian, K.S.: Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5, 273–278 (1995)CrossRefGoogle Scholar
  14. 14.
    Kubikova, E.: Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. J. Plant Physiol. 158, 1227–1230 (2001)CrossRefGoogle Scholar
  15. 15.
    Les coordonnées géographiques de Rabat, Maroc. Accessed 09 May 2018
  16. 16.
    Climat: Rabat. Accessed 09 May 2018
  17. 17.
    Duncan, D.B.: Multiple range and multiple F-tests. Biometrics 11, 1–42 (1955)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jones, H.G.: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58, 119–130 (2007)CrossRefGoogle Scholar
  19. 19.
    Zarik, L.: Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. Comptes Rendus Biologies 339(5–6), 185–196 (2016)CrossRefGoogle Scholar
  20. 20.
    Nasslahsen, B.: Physiological responses of Quercus suber to the effect of water deficit in presence of ectomycorrhizal fungi. J. Appl. Phys. Sci. 4(1), 33–45 (2018)Google Scholar
  21. 21.
    Orcutt, D.: The Physiology of Plants Under Stress: Soil and Biotic Factors. Wiley, New York (2000)Google Scholar
  22. 22.
    Shaw, B.: Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul. 37, 77–83 (2002)CrossRefGoogle Scholar
  23. 23.
    Meddich, A.: Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie 20(3), 283–295 (2000)CrossRefGoogle Scholar
  24. 24.
    Gemma, J.N.: Mycorrhizal fungi improve drought resistance in creeping bentgrass. J. Turfgrass Sci. 3, 15–29 (1997)Google Scholar
  25. 25.
    Ruiz-Lozano, J.M.: Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plan. 98, 767–772 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amal El Khaddari
    • 1
    • 2
    Email author
  • Jalila Aoujdad
    • 2
  • Younes Abbas
    • 3
  • Abdenbi Zine El Abidine
    • 4
  • Mohamed Ouajdi
    • 2
  • Salwa El Antry
    • 2
  • Jamila Dahmani
    • 1
  1. 1.Laboratory of Botany, Biotechnology and Plant Protection, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Center of Forest ResearchRabat-AgdalMorocco
  3. 3.Polyvalent R&D Laboratory, Polydisciplinary FacultySultan Moulay Slimane UniversityBeni-MellalMorocco
  4. 4.National School Forestry of EngineersSaleMorocco

Personalised recommendations