Advertisement

Fuzzy TOPSIS with Coherent Measure: Applied to a Closed Loop Agriculture Supply Chain

  • Mohamed El AlaouiEmail author
  • Hussain Ben-Azza
  • Khalid El Yassini
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 911)

Abstract

Fuzzy logic has been widely used combined with Multi Criteria Decision Making techniques in different application. Here we propose to aggregate fuzzy opinions with a mathematical model, in order to minimize discordances. An illustrative example treating closed loop agriculture Supply Chain is given.

Keywords

Fuzzy TOPSIS Optimal weight Coherence measure Performance analysis Agriculture 

References

  1. 1.
    Ortuño, M.T.: Multi-criteria Decision Analysis (MCDA). In: Encyclopedia of Sciences and Religions, p. 1376. Springer, Dordrecht (2013)CrossRefGoogle Scholar
  2. 2.
    Zavadskas, E.K., Turskis, Z., Kildienė, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)CrossRefGoogle Scholar
  3. 3.
    Chen, C.-T., Lin, C.-T., Huang, S.-F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 102, 289–301 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, K.-H., Liao, C.-N., Wu, L.-C.: A selection model to logistic centers based on TOPSIS and MCGP methods: the case of airline industry. https://www.hindawi.com/journals/jam/2014/470128/
  5. 5.
    Hsueh, J.-T., Lin, C.-Y.: Integrating the AHP and TOPSIS decision processes for evaluating the optimal collection strategy in reverse logistic for the TPI. Int. J. Green Energy 14, 1209–1220 (2017)CrossRefGoogle Scholar
  6. 6.
    Mahdevari, S., Shahriar, K., Esfahanipour, A.: Human health and safety risks management in underground coal mines using fuzzy TOPSIS. Sci. Total Environ. 488–489, 85–99 (2014)CrossRefGoogle Scholar
  7. 7.
    Taylan, O., Zytoon, M.A., Morfeq, A., Al-Hmouz, R., Herrera-Viedma, E.: Workplace assessment by fuzzy decision tree and TOPSIS methodologies to manage the occupational safety and health performance. J. Intell. Fuzzy Syst. 33, 1209–1224 (2017)CrossRefGoogle Scholar
  8. 8.
    Kaya, B.Y., Dağdeviren, M.: Selecting occupational safety equipment by MCDM approach considering universal design principles. Hum. Factors Ergon. Manuf. Serv. Ind. 26, 224–242 (2016)CrossRefGoogle Scholar
  9. 9.
    Rezaian, S., Jozi, S.A.: Health-safety and environmental risk assessment of refineries using of multi criteria decision making method. APCBEE Procedia. 3, 235–238 (2012)CrossRefGoogle Scholar
  10. 10.
    Turgut, Z.K., Tolga, A.Ç.: Fuzzy MCDM methods in sustainable and renewable energy alternative selection: fuzzy VIKOR and fuzzy TODIM. In: Energy Management—Collective and Computational Intelligence with Theory and Applications, pp. 277–314. Springer, Cham (2018)Google Scholar
  11. 11.
    Büyüközkan, G., Karabulut, Y., Güler, M.: Strategic renewable energy source selection for turkey with hesitant fuzzy MCDM method. In: Energy Management—Collective and Computational Intelligence with Theory and Applications, pp. 229–250. Springer, Cham (2018)Google Scholar
  12. 12.
    Majumder, P., Saha, A.K.: Development of financial liability index for hydropower plant with MCDM and neuro-genetic models. In: Application of Geographical Information Systems and Soft Computation Techniques in Water and Water Based Renewable Energy Problems, pp. 71–105. Springer, Singapore (2018)Google Scholar
  13. 13.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  14. 14.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, C.-T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114, 1–9 (2000)CrossRefGoogle Scholar
  16. 16.
    Lee, H.-S.: Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets Syst. 132, 303–315 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    USC of LM: What it’s all about–purpose, objectives, programs, policies. The Council (1999)Google Scholar
  18. 18.
    Rao, P.: Greening of suppliers/in-bound logistics—in the South East Asian context. In: Sarkis, J. (ed.) Greening the Supply Chain, pp. 189–204. Springer, London (2006)CrossRefGoogle Scholar
  19. 19.
    Gupta, S.M., Ilgin, M.A.: Multiple Criteria Decision Making Applications in Environmentally Conscious Manufacturing and Product Recovery. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  20. 20.
    Zeleny, M. (ed.): MCDM: Past Decade and Future Trends: A Source Book of Multiple Criteria Decision Making. JAI Press, Greenwich (1985)Google Scholar
  21. 21.
    Tarrant, J.R.: Tarrant: Agricultural Geography. Wiley, New York (1973)Google Scholar
  22. 22.
    Gasson, R.: Goals and values of farmers. J. Agric. Econ. 24, 521–542 (1973)CrossRefGoogle Scholar
  23. 23.
    Yemshanov, D., Koch, F.H., Riitters, K.H., McConkey, B., Huffman, T., Smith, S.: Assessing land clearing potential in the Canadian agriculture–forestry interface with a multi-attribute frontier approach. Ecol. Indic. 54, 71–81 (2015)CrossRefGoogle Scholar
  24. 24.
    Al-Juaidi, A.E., Kaluarachchi, J.J., Kim, U.: Multi-criteria decision analysis of treated wastewater use for agriculture in water deficit regions1. JAWRA J. Am. Water Resour. Assoc. 46, 395–411 (2010)CrossRefGoogle Scholar
  25. 25.
    Chen, Y., Khan, S., Paydar, Z.: To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrig. Drain. 59, 174–188 (2010)Google Scholar
  26. 26.
    Benke, K.K., Pelizaro, C., Lowell, K.E.: Uncertainty in multi-criteria evaluation techniques when used for land suitability analysis. In: Crop Modeling and Decision Support, pp. 291–298. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Zolekar, R.B., Bhagat, V.S.: Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Comput. Electron. Agric. 118, 300–321 (2015)CrossRefGoogle Scholar
  28. 28.
    Ahmed, G.B., Shariff, A.R.M., Balasundram, S.K., bin Abdullah, A.F.: Agriculture land suitability analysis evaluation based multi criteria and GIS approach. IOP Conf. Ser. Earth Environ. Sci. 37, 012044 (2016)CrossRefGoogle Scholar
  29. 29.
    Aldababseh, A., Temimi, M., Maghelal, P., Branch, O., Wulfmeyer, V.: Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 10, 803 (2018)CrossRefGoogle Scholar
  30. 30.
    Sinha, S., Tripathi, N.K.: Hybrid satellite agriculture drought indices: a multi criteria approach to improve crop insurance. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–5 (2016)Google Scholar
  31. 31.
    Petkovics, I., Simon, J., Petkovics, Á., Čović, Z.: Selection of unmanned aerial vehicle for precision agriculture with multi-criteria decision making algorithm. In: 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), pp. 000151–000156 (2017)Google Scholar
  32. 32.
    Romero, C., Rehman, T.: Multiple Criteria Analysis for Agricultural, vol. 11, 2nd edn. Elsevier Science, Amsterdam, Boston (2003)Google Scholar
  33. 33.
    Bausch, J.C., Bojórquez-Tapia, L., Eakin, H.: Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustain. Sci. 9, 303–319 (2014)CrossRefGoogle Scholar
  34. 34.
    Riesgo, L., Gallego-Ayala, J.: Multicriteria analysis of olive farms sustainability: an application of TOPSIS models. In: Handbook of Operations Research in Agriculture and the Agri-Food Industry, pp. 327–353. Springer, New York (2015)CrossRefGoogle Scholar
  35. 35.
    López, J.C.L., Carrillo, P.A.Á., Valenzuela, O.A.: A multicriteria group decision model for ranking technology packages in agriculture. In: Soft Computing for Sustainability Science, pp. 137–161. Springer, Cham (2018)Google Scholar
  36. 36.
    Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D. (eds.): Multicriteria Analysis in Agriculture: Current Trends and Recent Applications. Springer International Publishing (2018)Google Scholar
  37. 37.
    Quinn, B., Schiel, K., Caruso, G.: Mapping uncertainty from multi-criteria analysis of land development suitability, the case of Howth. Dublin. J. Maps. 11, 487–495 (2015)CrossRefGoogle Scholar
  38. 38.
    Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H.: Uncertainty analysis in the application of multi-criteria decision-making methods in Australian strategic environmental decisions. J. Environ. Plan. Manag. 56, 1097–1124 (2013)CrossRefGoogle Scholar
  39. 39.
    Hamsa, K.R., Veerabhadrappa, B.: Review on decision-making under risk and uncertainty in agriculture. Econ. Aff. 62, 447–453 (2017)CrossRefGoogle Scholar
  40. 40.
    Cancian, F.: Risk and uncertainty in agricultural decision making. Risk Uncertain. Agric. Decis. Mak., 161–176 (1980). Ch. (7)Google Scholar
  41. 41.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  42. 42.
    Durbach, I.N., Stewart, T.J.: Modeling uncertainty in multi-criteria decision analysis. Eur. J. Oper. Res. 223, 1–14 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Skalna, I., Rębiasz, B., Gaweł, B., Basiura, B., Duda, J., Opiła, J., Pełech-Pilichowsk, T.: Advances in Fuzzy Decision Making - Theory and Practice. Springer International Publishing (2015)Google Scholar
  44. 44.
    Al-Kloub, B., Al-Shemmeri, T., Pearman, A.: The role of weights in multi-criteria decision aid, and the ranking of water projects in Jordan. Eur. J. Oper. Res. 99, 278–288 (1997)CrossRefGoogle Scholar
  45. 45.
    Zardari, N.H., Ahmed, K., Shirazi, S.M., Yusop, Z.B.: Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Springer International Publishing (2015)Google Scholar
  46. 46.
    Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  47. 47.
    Evans, G.W.: Multiple Criteria Decision Analysis for Industrial Engineering: Methodology and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  48. 48.
    Yuexin, Y.: Efficiency measurement of agricultural mechanization in China based on DEA-TOPSIS models. World Autom. Congr. 2012, 1–4 (2012)Google Scholar
  49. 49.
    Yuexin, Y.: Evolution analysis of agricultural mechanization in Jilin province based on TOPSIS methodology. World Autom. Congr. 2012, 1–4 (2012)Google Scholar
  50. 50.
    Budianto, A.E., Yunus, E.P.A.: Expert system to optimize the best goat selection using topsis: decision support system. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), pp. 1–5 (2017)Google Scholar
  51. 51.
    Papathanasiou, J., Ploskas, N., Bournaris, T., Manos, B.: A decision support system for multiple criteria alternative ranking using TOPSIS and VIKOR: a case study on social sustainability in agriculture. In: Decision Support Systems VI - Addressing Sustainability and Societal Challenges, pp. 3–15. Springer, Cham (2016)Google Scholar
  52. 52.
    Xiao, C., Shao, D., Yang, F.: Improved TOPSIS method and its application on initial water rights allocation in the watershed. In: Information Computing and Applications, pp. 583–592. Springer, Heidelberg (2011)Google Scholar
  53. 53.
    Yal, G.P., Akgün, H.: Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: a case study for Ankara. Turkey. Bull. Eng. Geol. Environ. 73, 369–388 (2014)CrossRefGoogle Scholar
  54. 54.
    Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A.A., Ghorbani, M.A., Shahbazi, F.: Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma 310, 178–190 (2018)CrossRefGoogle Scholar
  55. 55.
    Tan, Y., Cai, Z., Qi, H.: A process-based performance analysis for closed-loop agriculture supply Chain. In: 2010 International Conference on Intelligent System Design and Engineering Application, pp. 145–149 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed El Alaoui
    • 1
    Email author
  • Hussain Ben-Azza
    • 1
  • Khalid El Yassini
    • 2
  1. 1.Department of Industrial and Production Engineering, ENSAM-MeknesMoulay Ismail UniversityMeknesMorocco
  2. 2.IA Laboratory, Science FacultyMoulay Ismail UniversityMeknesMorocco

Personalised recommendations