Advertisement

Model Predictive Control

  • Krzysztof PatanEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 197)

Abstract

The chapter contains the results of the original research dealing with robust and fault-tolerant predictive control schemes. The first part of the chapter is devoted to nonlinear predictive control developed by means of neural networks. Some of the most important issues connected with optimization and stability are investigated in detail. The next part introduces the sensor fault-tolerant control (For this purpose, predictive control is equipped with a fault-diagnosis block.) Binary diagnostic matrix as well as multivalued diagnostic matrix are used in this context. The proposed control strategy is tested using the tank unit example provided. We develop a robust version of predictive control based on a robust model of a plant. We investigate two approaches: uncertainty modelling using model error modelling and statistical uncertainty estimation via statistical analysis. The proposed control schemes are tested on the example of a pneumatic servomechanism.

References

  1. 1.
    Alessandri, A., Cervellera, C., Gaggero, M.: Predictive control of container flows in maritime intermodal terminals. IEEE Trans. Control Syst. Technol. 21, 1423–1431 (2013)CrossRefGoogle Scholar
  2. 2.
    Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford, UK (2007)zbMATHGoogle Scholar
  3. 3.
    Bemporad, A.: A predictive controller with artificial lyapunov function for linear systems with input/state constraints. Automatica 34(10), 1255–1260 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli, A., Vicino, A., Tesi A. (eds.) Robustness in Identification and Control. Lecture Notes in Control and Information Sciences, pp. 207–226. Springer, London (1999)Google Scholar
  5. 5.
    Bertsekas, D.P.: Nonlinear Programming. Optimization and Computation Series, 2nd edn. Athena Scientific, Belmont (1999)Google Scholar
  6. 6.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2006)zbMATHGoogle Scholar
  7. 7.
    Breger, L., How, J.P.: Nonlinear model predictive control technique for unmaned air vehicles. J. Guid. Control Dyn. 29(5), 1179–1188 (2006)CrossRefGoogle Scholar
  8. 8.
    Camacho, E.F., Bordóns, C.: Model Predictive Control, 2nd edn. Springer, London (2007)CrossRefGoogle Scholar
  9. 9.
    Clarke, D.W., Scattolini, R.: Constrained receding-horizon predictive control. IEE Proc. D 138(4), 347–354 (1991)CrossRefGoogle Scholar
  10. 10.
    Czajkowski, A., Patan, K., Szymański, M.: Application of the state space neural network to the fault tolerant control system of the PLC-controlled laboratory stand. Eng. Appl. Artif. Intell. 30, 168–178 (2014)CrossRefGoogle Scholar
  11. 11.
    Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems. Practical Methods for Small Unmanned Aerial Vehicles. Advances in Industrial Control. Springer, London (2009)Google Scholar
  12. 12.
    Fedorov, V.V., Hackl, P.: Model-Oriented Design of Experiments. Lecture Notes in Statistics. Springer, New York (1997)CrossRefGoogle Scholar
  13. 13.
    Gossner, J.R., Kouvaritakis, B., Rossiter, J.A.: Stable generalized predictive control with constraints and bounded disturbances. Automatica 33(4), 551–568 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice-Hall, New Jersey (1999)Google Scholar
  15. 15.
    Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. J. Tribol. 112, 147–152 (1990)CrossRefGoogle Scholar
  16. 16.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)CrossRefGoogle Scholar
  17. 17.
    Joosten, D.A., Maciejowski, J.: MPC design for fault-tolerant flight control purposes based upon an existing output feedback controller. In: Proceedings of 7th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2009 Barcelona, Spain, 30th June–3rd July 2009 (2009). (CD-ROM)Google Scholar
  18. 18.
    Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kim, Y.H., Kwon, W.H., Lee, Y.I.: Min-max generalized predictive control with stability. Comput. Chem. Eng. 22(12), 1851–1858 (1998)CrossRefGoogle Scholar
  20. 20.
    Koerber, A., King, R.: Combined feedback-feedforward control of wind turbines using state-constrained model predictive control. IEEE Trans. Control Syst. Technol. 21, 1117–1128 (2013)CrossRefGoogle Scholar
  21. 21.
    Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)Google Scholar
  22. 22.
    Kościelny, J.M., Bartyś, M., Syfert, M.: Method of multiple fault isolation in large scale systems. IEEE Trans. Control Syst. Technol. 20, 1302–1310 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Z., Xia, Y., Su, C.Y., Deng, J., Fu, J., He, W.: Missile guidance law based on robust model predictive control using neural-network optimization. IEEE Trans. Neural Netw. Learn. Syst. 26, 1803–1809 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Limon, D., Bravo, J., Alamo, T., Camacho, E.F.: Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proc. Part D. Control Theory Appl. 152, 325–332 (2005)Google Scholar
  25. 25.
    Maciejowski, J.: Predictive Control with Constraints. Prentice-Hall, Harlow (2002)zbMATHGoogle Scholar
  26. 26.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23, 667–682 (1999)CrossRefGoogle Scholar
  28. 28.
    Nelles, O.: Nonlinear System Identification. From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2001)zbMATHGoogle Scholar
  29. 29.
    Nørgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)CrossRefGoogle Scholar
  30. 30.
    Nørgaard, M., Sørensen, P.H., Poulsen, N., Ravn, O., Hansen, L.: Intelligent predictive control of nonlinear processes using neural networks. In: Proceedings of the 1996 IEEE International Symposium on Intelligent Control Dearborn, MI, September 15–18, 1996, pp. 301–306 (1996)Google Scholar
  31. 31.
    Noura, K., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault Tolerant Control Systems. Design and Practical Applications. Advanced in Industrial Control. Springer, London (2009)CrossRefGoogle Scholar
  32. 32.
    Patan, K.: Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks. Neural Netw. 21, 59–63 (2008)CrossRefGoogle Scholar
  33. 33.
    Patan, K.: Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes. Lecture Notes in Control and Information Sciences. Springer, Berlin (2008)Google Scholar
  34. 34.
    Patan, K.: Neural network based model predictive control: fault tolerance and stability. IEEE Trans. Control Syst. Technol. 23, 1147–1155 (2015)CrossRefGoogle Scholar
  35. 35.
    Patan, K.: Two stage neural network modelling for robust model predictive control. ISA Trans. 72, 56–65 (2018)CrossRefGoogle Scholar
  36. 36.
    Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)zbMATHGoogle Scholar
  37. 37.
    Patan, K., Korbicz, J.: Sensor fault estimation in the framework of model predictive control. boiler case study. In: Proceedings of 8th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2012 Mexico City, Mexico, 2012 (2012). (CD-ROM)Google Scholar
  38. 38.
    Patan, K., Patan, M., Kowalów, D.: Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems. In: 55th IEEE Conference on Decision and Control (CDC) (2016)Google Scholar
  39. 39.
    Patan, K., Witczak, P.: Robust model predictive control using neural networks. In: IEEE International Symposium on Intelligent Control, ISIC 2014, pp. 1107–1112. Antibes, France (2014)Google Scholar
  40. 40.
    Patan, M.: Sensor Networks Scheduling for Identification of Distributed Systems. Lecture Notes in Control and Information Sciences, vol. 425. Springer, Berlin (2012)Google Scholar
  41. 41.
    Rawlings, J.B., Muske, K.R.: Stability of constrained receding horizon control. IEEE Trans. Autom. Control 38(10), 1512–1516 (1993)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Scokaert, P., Clarke, D.W.: Stabilizing properties of constrained predictive control. IEE Proc. Control Theory Appl. 141(5), 295–304 (1994)CrossRefGoogle Scholar
  43. 43.
    Scokaert, P., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive (Feasibility implies stability). IEEE Trans. Autom. Control 44(3), 648–654 (1999)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Analysis and Design, 2nd edn. Wiley, New York (2005)Google Scholar
  45. 45.
    Sourander, M., Vermasvuori, M., Sauter, D., Liikala, T., Jämsä-Jounela, S.L.: Fault tolerant control for a dearomatisation process. J. Process. Control 19, 1091–1102 (2009)CrossRefGoogle Scholar
  46. 46.
    Staroswiecki, M., Yang, H., Jiang, B.: Active fault tolerant control based on progressive accomodation. Automatica 43(12), 2070–2076 (2007)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Tatjewski, P.: Advanced Control of Industrial Processes. Springer, London (2007)zbMATHGoogle Scholar
  48. 48.
    Tatjewski, P.: Disturbance modeling and state estimation for offset-free predictive control with state-space process models. Int. J. Appl. Math. Comput. Sci. 24(2), 313–323 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB. Springer, London (2009)zbMATHGoogle Scholar
  50. 50.
    Yan, Z., Wang, J.: Robust model predictive control of nonlinear systems with unmodelled dynamics and bounded uncertainties based on neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 457–469 (2014)CrossRefGoogle Scholar
  51. 51.
    Zangwill, W.I.: Nonlinear programming via penalty functions. Manag. Sci. 13, 344–358 (1967)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations