Advertisement

Data Scientists

  • Thilo StadelmannEmail author
  • Kurt Stockinger
  • Gundula Heinatz Bürki
  • Martin Braschler
Chapter

Abstract

What is a data scientist? How can you become one? How can you form a team of data scientists that fits your organization? In this chapter, we trace the skillset of a successful data scientist and define the necessary competencies. We give a disambiguation to other historically or contemporary definitions of the term and show how a career as a data scientist might get started. Finally, we will answer the third question, that is, how to build analytics teams within a data-driven organization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R. (1961). Curse of dimensionality. Adaptive control processes: A guided tour. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  2. Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231.MathSciNetCrossRefGoogle Scholar
  3. Brodie, M. L. (2015a). The emerging discipline of data science – Principles and techniques for data-intensive analysis. Keynote talk the 2nd Swiss Workshop on Data Science SDS|2015. Retrieved April 4, 2018, from https://www.youtube.com/watch?v=z93X2k9RVqg
  4. Brodie, M. L. (2015b). Doubt and verify: Data science power tools. KDnuggets. Retrieved April 5, 2018, from https://www.kdnuggets.com/2015/07/doubt-verify-data-science-power-tools.html
  5. Cieliebak, M., Dürr, O., & Uzdilli, F. K. (2014). Meta-classifiers easily improve commercial sentiment detection tools. LREC.Google Scholar
  6. Colclough, A. (2017). When data visualization goes wrong and numbers mislead. Retrieved April 4, 2018, from https://www.dwrl.utexas.edu/2017/12/29/when-data-visualization-goes-wrong/
  7. Columbus, L. (2017). IBM predicts demand for data scientists will soar 28% by 2020. Retrieved April 5, 2018, from https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists-will-soar-28-by-2020/#6cf2d57e7e3b
  8. Conway, D. (2010). The data science Venn diagram. Retrieved April 4, 2018, from http://www.dataists.com/2010/09/the-data-science-venn-diagram/ (figure available from http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram).
  9. Fux, S. J. (2005). Persönlichkeit und Berufstätigkeit: Theorie und Instrumente von John Holland im deutschsprachigen Raum, unter Adaptation und Weiterentwicklung von Self-directed Search (SDS) und Position Classification Inventory (PCI). Cuvillier Verlag.Google Scholar
  10. Guest, D. (1991, September 17). The hunt is on for the Renaissance Man of computing. The Independent (London). Quoted by Retrieved April 4, 2018, from https://wordspy.com/index.php?word=t-shaped
  11. Harris, J. G., & Eitel-Porter, R. (2015). Data scientists: ‘As rare as unicorns’. The Guardian. Retrieved April 5, 2018, from https://www.theguardian.com/media-network/2015/feb/12/data-scientists-as-rare-as-unicorns
  12. Hernandez, J., Berkey, B., & Bhattacharya, R. (2013). Building an analytics-driven organization. Retrieved June 9, 2018, from https://www.accenture.com/dk-en/~/media/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_2/Accenture-Building-Analytics-Driven-Organization.pdf
  13. Jaokar, A. (2016). How to become a (Type A) data scientist. KDnuggets. Retrieved April 4, 2018, from https://www.kdnuggets.com/2016/08/become-type-a-data-scientist.html
  14. Jones, A. (2014). Data science skills and business problems. KDnuggets. Retrieved April 4, 2018, from http://www.kdnuggets.com/2014/06/data-science-skills-business-problems.html
  15. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. Retrieved March 23, 2018, from https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
  16. Needham, J. (2013). Disruptive possibilities – How big data changes everything. O’Reilly Media. ISBN 978-1-449-36567-7.Google Scholar
  17. Olavsrud, T. (2015). Don’t look for unicorns, build a data science team. CIO. Retrieved May 28, 2018, from https://www.cio.com/article/3011648/analytics/dont-look-for-unicorns-build-a-data-science-team.html
  18. Patil, D. (2011). Building data science teams. Retrieved April 4, 2018, from http://radar.oreilly.com/2011/09/building-data-science-teams.html
  19. Peek, J., O’Reilly, T., & Loukides, M. (1993). UNIX power tools. Sebastopol, CA: Oreilly & Associates Incorporated.zbMATHGoogle Scholar
  20. Press, G. (2015). The hunt for unicorn data scientists lifts salaries for all data analytics professionals. Retrieved May 28, 2018, from https://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/
  21. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). New Jersey: Pearson Education.zbMATHGoogle Scholar
  22. Sicular, S. (2012). The quest for data scientists. The Australian Business Review. Retrieved April 5, 2018, from https://www.theaustralian.com.au/business/business-spectator/the-quest-for-data-scientists/news-story/eab27147e92d0011520f5adb32010e43
  23. Stadelmann, T. (2017). Science, applied. Die wissenschaftliche Methode im Kern des Produktentwicklungsprozesses. AIssays blog. Retrieved April 6, 2018, from https://stdm.github.io/Science-applied/
  24. Stadelmann, T., Stockinger, K., Braschler, M., Cieliebak, M., Baudinot, G. R., Dürr, O., & Ruckstuhl, A. (2013, August). Applied data science in Europe – Challenges for academia in keeping up with a highly demanded topic. In European computer science summit ECSS 2013. Amsterdam: Informatics Europe.Google Scholar
  25. Stanley, J., & Tunkelang, D. (2016). Doing data science right – Your most common questions answered. First Round Review. Retrieved June 11, 2018, from http://firstround.com/review/doing-data-science-right-your-most-common-questions-answered/
  26. Stockinger, K., Stadelmann, T., & Ruckstuhl, A. (2016). Data Scientist als Beruf. In D. Fasel, & A. Meier (Eds.), Big Data. Edition HMD.  https://doi.org/10.1007/978-3-658-11589-0_4.CrossRefGoogle Scholar
  27. Taylor, D. (2014). Battle of the data science Venn diagrams. Retrieved April 4, 2018, from http://www.prooffreader.com/2016/09/battle-of-data-science-venn-diagrams.html
  28. Tierney, B. (2013, March 22). Type I and Type II data scientists. Oralytics Blog. Retrieved April 4, 2018, from http://www.oralytics.com/2013/03/type-i-and-type-ii-data-scientists.html.
  29. Trafimow, D., & Marks, M. (2015). Editorial. Basic and Applied Social Psychology, 37(1), 1–2.  https://doi.org/10.1080/01973533.2015.1012991.MathSciNetCrossRefGoogle Scholar
  30. Wasserman, L. (2013). All of statistics: A concise course in statistical inference. New York: Springer Science & Business Media.zbMATHGoogle Scholar
  31. Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (pp. 29–39).Google Scholar
  32. Wu, J. (1997). Statistics = data science? Inaugural lecture at university of michigan, Ann Arbor. Retrieved April 4, 2018, from https://www2.isye.gatech.edu/~jeffwu/presentations/datascience.pdf
  33. Zinkevich, M. (2018). Rules of machine learning: Best practices for ML engineering. Retrieved April 6, 2018, from https://developers.google.com/machine-learning/rules-of-ml/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thilo Stadelmann
    • 1
    Email author
  • Kurt Stockinger
    • 1
  • Gundula Heinatz Bürki
    • 2
  • Martin Braschler
    • 1
  1. 1.ZHAW Zurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Swiss Alliance for Data-Intensive ServicesThunSwitzerland

Personalised recommendations