Advertisement

Data Science

  • Martin BraschlerEmail author
  • Thilo Stadelmann
  • Kurt Stockinger
Chapter

Abstract

Even though it has only entered public perception relatively recently, the term “data science” already means many things to many people. This chapter explores both top-down and bottom-up views on the field, on the basis of which we define data science as “a unique blend of principles and methods from analytics, engineering, entrepreneurship and communication that aim at generating value from the data itself.” The chapter then discusses the disciplines that contribute to this “blend,” briefly outlining their contributions and giving pointers for readers interested in exploring their backgrounds further.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., & Ullman, J. D. (1992). Foundations of computer science. New York: Computer Science Press.zbMATHGoogle Scholar
  2. Bateman, S., Gutwin, C., & Nacenta, M. (2008). Seeing things in the clouds: The effect of visual features on tag cloud selections. In Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia (pp. 193–202). Pittsburgh: ACM.CrossRefGoogle Scholar
  3. Bellinger, G., Castro, D., & Mills, A. (2004). Data, information, knowledge, and wisdom. http://www.Systems-thinking.org/dikw/dikw.htm
  4. Bishop, C. M. (2007). Pattern recognition and machine learning. New York: Springer.zbMATHGoogle Scholar
  5. Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26(1), 65–74.CrossRefGoogle Scholar
  6. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36, 1165–1188.CrossRefGoogle Scholar
  7. Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.CrossRefGoogle Scholar
  8. Davenport, T. H., & Patil, D. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review. https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.
  9. Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387.MathSciNetCrossRefGoogle Scholar
  10. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). Wiley.Google Scholar
  11. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37.Google Scholar
  12. Frické, M. (2009). The knowledge pyramid: A critique of the DIKW hierarchy. Journal of Information Science, 35(2), 131–142.CrossRefGoogle Scholar
  13. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. Cambridge: MIT Press.zbMATHGoogle Scholar
  14. Holcomb, Z. C. (1997). Fundamentals of descriptive statistics. London: Routledge.Google Scholar
  15. Hughes, J. F., Van Dam, A., Foley, J. D., McGuire, M., Feiner, S. K., Sklar, D. F., & Akeley, K. (2013). Computer graphics: Principles and practice (3rd ed.). Boston: Addison Wesley Professional.Google Scholar
  16. Inmon, W. H. (2005). Building the data warehouse. Indianapolis: Wiley.Google Scholar
  17. Knuth, D. E. (1968). The art of computer programming: Fundamental algorithms. Reading: Addison-Wesley.zbMATHGoogle Scholar
  18. LeCun, Y. (2013). Hi Serge. Google+ post. Available May 23, 2018, from https://plus.google.com/+YannLeCunPhD/posts/gurGyczzsJ7
  19. Loukides, M. (2010). What is data science. Available June 12, 2018, from https://www.oreilly.com/ideas/what-is-data-science
  20. Luger, G. F. (2008). Artificial intelligence: Structures and strategies for complex problem solving (6th ed.). Boston: Pearson.Google Scholar
  21. Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge: MIT Press.zbMATHGoogle Scholar
  22. Ramakrishnan, R., & Gehrke, J. (2002). Database management systems (3rd ed.). New York: McGraw Hill.zbMATHGoogle Scholar
  23. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ: Pearson Education.zbMATHGoogle Scholar
  24. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.MathSciNetCrossRefGoogle Scholar
  25. Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information retrieval (Vol. 39). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  26. Sey, M. (2015). Data visualization design and the art of depicting reality. https://www.moma.org/explore/inside_out/2015/12/10/data-visualization-design-and-the-art-of-depicting-reality/
  27. Shearer, C. (2000). The CRISP-DM model: The new blueprint for data mining. Journal of Data Warehousing, 5(4), 13–22.Google Scholar
  28. Silberschatz, A., Korth, H. F., & Sudarshan, S. (1997). Database system concepts (Vol. 4). New York: McGraw-Hill.zbMATHGoogle Scholar
  29. Spohrer, J. (2009). Editorial column—Welcome to our declaration of interdependence. Service Science, 1(1), i–ii.  https://doi.org/10.1287/serv.1.1.i.CrossRefGoogle Scholar
  30. Stadelmann, T., Stockinger, K., Braschler, M., Cieliebak, M., Baudinot, G., Dürr, O., & Ruckstuhl, A. (2013, August). Applied data science in Europe: Challenges for academia in keeping up with a highly demanded topic. European Computer Science Summit, ECSS 2013, Informatics Europe, Amsterdam.Google Scholar
  31. Stockinger, K., Stadelmann, T., Ruckstuhl, A. (2015). Data Scientist als Beruf. Big Data – Grundlagen, Systeme und Nutzungspotenziale (Edition HMD, 59–81). Berlin: Springer.CrossRefGoogle Scholar
  32. Stonebraker, M. (2010). SQL databases v. NoSQL databases. CACM, 53(4), 2010.CrossRefGoogle Scholar
  33. Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.Google Scholar
  34. Van Rossum, G., & Drake, F. L. (2003). An introduction to python. Bristol: Network Theory.Google Scholar
  35. Von Neumann, J. (1993). First draft of a report on the EDVAC. IEEE Annals of the History of Computing, 15(4), 27–75.MathSciNetCrossRefGoogle Scholar
  36. Wall, L., Christiansen, T., & Schwartz, R. L. (1999). Programming perl. Sebastopol, CA: O’Reilly & Associates.zbMATHGoogle Scholar
  37. Ware, C. (2012). Information visualization: Perception for design. San Francisco: Elsevier.Google Scholar
  38. Wasserman, L. (2013). All of statistics: A concise course in statistical inference. Berlin: Springer Science & Business Media.zbMATHGoogle Scholar
  39. Wilcox, R. R. (2009). Basic statistics: Understanding conventional methods and modern insights. Oxford: Oxford University Press on Demand.zbMATHGoogle Scholar
  40. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.Google Scholar
  41. Woods, D. (2012). Bitly’s Hilary Mason on “what is a data scientist?” Forbes Magazine. https://www.forbes.com/sites/danwoods/2012/03/08/hilary-mason-what-is-a-data-scientist/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Braschler
    • 1
    Email author
  • Thilo Stadelmann
    • 1
  • Kurt Stockinger
    • 1
  1. 1.ZHAW Zurich University of Applied SciencesWinterthurSwitzerland

Personalised recommendations