Advertisement

Unsupervised Learning and Simulation for Complexity Management in Business Operations

  • Lukas HollensteinEmail author
  • Lukas Lichtensteiger
  • Thilo Stadelmann
  • Mohammadreza Amirian
  • Lukas Budde
  • Jürg Meierhofer
  • Rudolf M. Füchslin
  • Thomas Friedli
Chapter

Abstract

A key resource in data analytics projects is the data to be analyzed. What can be done in the middle of a project if this data is not available as planned? This chapter explores a potential solution based on a use case from the manufacturing industry where the drivers of production complexity (and thus costs) were supposed to be determined by analyzing raw data from the shop floor, with the goal of subsequently recommending measures to simplify production processes and reduce complexity costs.

The unavailability of the data—often a major threat to the anticipated outcome of a project—has been alleviated in this case study by means of simulation and unsupervised machine learning: a physical model of the shop floor produced the necessary lower-level records from high-level descriptions of the facility. Then, neural autoencoders learned a measure of complexity regardless of any human-contributed labels.

In contrast to conventional complexity measures based on business analysis done by consultants, our data-driven methodology measures production complexity in a fully automated way while maintaining a high correlation to the human-devised measures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful for the support by CTI grant 18993.1 PFES-ES, and for the participation of our colleagues from the ZHAW Datalab in the conducted survey.

References

  1. Abbeel, P. (2017). Pieter Abbeel: Deep learning-to-learn robotic control [video-file]. Retrieved from https://youtu.be/TERCdog1ddE
  2. Batty, M., Morphet, R., Masucci, P., & Stanilov, K. (2014). Entropy, complexity, and spatial information. Journal of Geographical Systems, 16(4), 363–385.CrossRefGoogle Scholar
  3. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.CrossRefGoogle Scholar
  4. Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning theory. In Advanced lectures on machine learning (pp. 169–207). Heidelberg: Springer.CrossRefGoogle Scholar
  5. Budde, L., Faix, A., & Friedli, T. (2015). From functional to cross-functional management of product portfolio complexity. In Presented at the POMS 26th Annual Conference, Washington, DC.Google Scholar
  6. Closs, D. J., Jacobs, M. A., Swink, M., & Webb, G. S. (2008). Toward a theory of competencies for the management of product complexity: Six case studies. Journal of Operations Management, 26(5), 590–610.  https://doi.org/10.1016/j.jom.2007.10.003.CrossRefGoogle Scholar
  7. Feldman, D. P., & Crutchfield, J. P. (1998). Measures of statistical complexity: Why? Physics Letters A, 238(4–5), 244–252.MathSciNetCrossRefGoogle Scholar
  8. Fischi, J., Nilchiani, R., & Wade, J. (2015). Dynamic complexity measures for use in complexity-based system design. IEEE Systems Journal, 11(4), 2018–2027.  https://doi.org/10.1109/JSYST.2015.2468601.CrossRefGoogle Scholar
  9. Fisher, M. L., & Ittner, C. D. (1999). The impact of product variety on automobile assembly operations: Empirical evidence and simulation analysis. Management Science, 45(6), 771–786.CrossRefGoogle Scholar
  10. Fisher, M., Ramdas, K., & Ulrich, K. (1999). Component sharing in the management of product variety: A study of automotive braking systems. Management Science, 45(3), 297–315.CrossRefGoogle Scholar
  11. Fogliatto, F. S., Da Silveira, G. J., & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics, 138(1), 14–25.CrossRefGoogle Scholar
  12. Friedli, T., Basu, P., Bellm, D., & Werani, J. (Eds.). (2013). Leading pharmaceutical operational excellence: Outstanding practices and cases. Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-35161-7.CrossRefGoogle Scholar
  13. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press. Retrieved December 22, 2017, from http://www.deeplearningbook.org
  14. Henriques, T., Gonçalves, H., Antunes, L., Matias, M., Bernardes, J., & Costa-Santos, C. (2013). Entropy and compression: Two measures of complexity. Journal of Evaluation in Clinical Practice, 19(6), 1101–1106.CrossRefGoogle Scholar
  15. Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. CoRR, 1710, 05468. Retrieved December 22, 2017, from https://arxiv.org/abs/1710.05468
  16. Kekre, S., & Srinivasan, K. (1990). Broader product line: A necessity to achieve success? Management Science, 36(10), 1216–1232.CrossRefGoogle Scholar
  17. Krishnan, V., & Gupta, S. (2001). Appropriateness and impact of platform-based product development. Management Science, 47(1), 52–68.CrossRefGoogle Scholar
  18. Lancaster, K. (1990). The economics of product variety: A survey. Marketing Science, 9(3), 189–206.CrossRefGoogle Scholar
  19. Lichtensteiger, L. & Pfeifer, R. (2002). An optimal sensor morphology improves adaptability of neural network controllers. In J. R. Dorronsoro (Ed.), Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), Lecture Notes in Computer Science LNCS 2415 (pp. 850–855).Google Scholar
  20. Meierhofer, J. & Meier, K., (2017). From data science to value creation. In St. Za, M. Drăgoicea, & M. Cavallari (Eds.) Exploring Services Science, 8th International Conference, IESS 2017, Rome, Italy, May 24–26, 2017, Proceedings (pp. 173–181). Cham: Springer.Google Scholar
  21. Orfi, N., Terpenny, J., & Sahin-Sariisik, A. (2012). Harnessing product complexity: Step 2—measuring and evaluating complexity levels. The Engineering Economist, 57(3), 178–191.  https://doi.org/10.1080/0013791X.2012.702197.CrossRefGoogle Scholar
  22. Park, K., & Kremer, G. E. O. (2015). Assessment of static complexity in design and manufacturing of a product family and its impact on manufacturing performance. International Journal of Production Economics, 169, 215–232.CrossRefGoogle Scholar
  23. Pimentel, D., Nowak, R., & Balzano, L. (2014, June). On the sample complexity of subspace clustering with missing data. In 2014 IEEE Workshop on Statistical Signal Processing (SSP) (pp. 280–283). IEEE.Google Scholar
  24. Pinedo, M. L. (2009). Planning and scheduling in manufacturing and services (2nd ed.). Dordrecht: Springer.CrossRefGoogle Scholar
  25. Ramdas, K., & Sawhney, M. S. (2001, January 1). A cross-functional approach to evaluating multiple line extensions for assembled products [research-article]. Retrieved January 15, 2014, from http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.1.22.10667
  26. Schmidhuber, J. (2008). Driven by compression progress: A simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. In Workshop on anticipatory behavior in adaptive learning systems (pp. 48–76). Heidelberg: Springer.Google Scholar
  27. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.MathSciNetCrossRefGoogle Scholar
  28. Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., & Dürr, O. (2018). Beyond ImageNet - deep learning in industrial practice. In M. Braschler, T. Stadelmann, & K. Stockinger (Eds.), Applied data science: Lessons learned for the data-driven business. Heidelberg: Springer.Google Scholar
  29. Swiss Alliance for Data-Intensive Services. (2017). Digitization & innovation through cooperation. Glimpses from the digitization & innovation workshop at “Konferenz Digitale Schweiz”. Retrieved April 26, 2018, from https://data-service-alliance.ch/blog/blog/digitization-innovation-through-cooperation-glimpses-from-the-digitization-innovation-workshop
  30. Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.  https://doi.org/10.1016/j.ijpe.2005.12.006.CrossRefGoogle Scholar
  31. Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation (2nd ed.). Orlando, FL: Academic Press.zbMATHGoogle Scholar
  32. Zhu, X., Gibson, B. R., & Rogers, T. T. (2009). Human rademacher complexity. In Advances in neural information processing systems (pp. 2322–2330). Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lukas Hollenstein
    • 1
    Email author
  • Lukas Lichtensteiger
    • 1
  • Thilo Stadelmann
    • 1
  • Mohammadreza Amirian
    • 1
  • Lukas Budde
    • 2
  • Jürg Meierhofer
    • 1
  • Rudolf M. Füchslin
    • 1
  • Thomas Friedli
    • 2
  1. 1.ZHAW Zurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Institute of Technology ManagementUniversity of St. GallenSt. GallenSwitzerland

Personalised recommendations