The Ethics of Big Data Applications in the Consumer Sector

  • Markus ChristenEmail author
  • Helene Blumer
  • Christian Hauser
  • Markus Huppenbauer


Business applications relying on processing of large amounts of heterogeneous data (Big Data) are considered to be key drivers of innovation in the digital economy. However, these applications also pose ethical issues that may undermine the credibility of data-driven businesses. In our contribution, we discuss ethical problems that are associated with Big Data such as: How are core values like autonomy, privacy, and solidarity affected in a Big Data world? Are some data a public good? Or: Are we obliged to divulge personal data to a certain degree in order to make the society more secure or more efficient? We answer those questions by first outlining the ethical topics that are discussed in the scientific literature and the lay media using a bibliometric approach. Second, referring to the results of expert interviews and workshops with practitioners, we identify core norms and values affected by Big Data applications—autonomy, equality, fairness, freedom, privacy, property-rights, solidarity, and transparency—and outline how they are exemplified in examples of Big Data consumer applications, for example, in terms of informational self-determination, non-discrimination, or free opinion formation. Based on use cases such as personalized advertising, individual pricing, or credit risk management we discuss the process of balancing such values in order to identify legitimate, questionable, and unacceptable Big Data applications from an ethics point of view. We close with recommendations on how practitioners working in applied data science can deal with ethical issues of Big Data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyd, D., & Crawford, K. (2012). Critical questions for big data. Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication and Society, 15(5), 662–679.CrossRefGoogle Scholar
  2. Davis, K., & Patterson, D. (2012). Ethics of big data. Sebastopol, CA: O’Reilly Media.Google Scholar
  3. Fiske, A. P., & Tetlock, P. E. (1997). Taboo trade-offs: Reactions to transactions that transgress the spheres of justice. Political Psychology, 18, 255–297.CrossRefGoogle Scholar
  4. Friedman, B., Kahn, P. H., Jr., & Borning, A. (2006). Value sensitive design and information systems. In P. Zhang & D. Galletta (Eds.), Human-computer interaction in management information systems: Foundations (pp. 348–372). New York: M.E. Sharpe.Google Scholar
  5. Goodman, B., & Flaxman, S. (2016). EU regulations on algorithmic decision-making and a “right to explanation”. 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY. Available at
  6. Graham, B. (2017). How banks could use an online ‘score’ to judge you., November 6 2017. Available at
  7. Hauser, C., Blumer, H., Christen, M., Huppenbauer, M., Hilty, L., & Kaiser, T. (2017). Ethical challenges of big data. SATW Expertenbericht. Available at
  8. Helbing, D., Frey, B.S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., van den Hoven, J., Zicari, R.V., & Zwitter, A. (2015). Das Digitale Manifest. Digitale Demokratie statt Datendiktatur. Spektrum der Wissenschaft, 17.12.2015. Last accessed August 10, 2016, from
  9. Informatics Europe & EUACM. (2018): When computers decide: European recommendations on machine-learned automated decision making. Last accessed February 28, 2018, from
  10. Lane, J., Stodden, V., Bender, S., & Nissenbaum, H. (Eds.). (2014). Privacy, big data, and the Public good: Frameworks for engagement. Cambridge: Cambridge University Press.Google Scholar
  11. Mattioli, D. (2012, August 23). On Orbitz, Mac users steered to pricier hotels. The Wall Street Journal. Available at
  12. Mayer-Schönberger, V., & Cukier, K. (2013). Big data: Die revolution, die unser Leben verändern wird. München: Redline.Google Scholar
  13. Metzler, M. (2016, October 23). Reiche bezahlen mehr. NZZ am Sonntag. Available at
  14. Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79, 119–157.Google Scholar
  15. Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  16. Tanner, C., & Medin, D. L. (2004). Protected values: No omission bias and no framing effects. Psychonomic Bulletin and Review, 11(1), 185–191.CrossRefGoogle Scholar
  17. Tetlock, P. E., Kristel, O. V., Elson, S. B., Green, M., & Lerner, J. S. (2000). The psychology of the unthinkable. Taboo trade-offs, forbidden base rates, and heretical counterfactuals. Journal of Personality and Social Psychology, (5), 853–870.Google Scholar
  18. Van de Poel, I., & Royakkers, L. (2011). Ethics, technology, and engineering: An introduction. Hoboken: Wiley.Google Scholar
  19. Van den Hoven, J. (1999). Privacy and the varieties of informational wrongdoing. Australian Journal of Professional and Applied Ethics, 1, 30–44.Google Scholar
  20. Van den Hoven, J., Helbing, D., Pedreschi, D., Domingo-Ferrer, J., Gianotti, F., & Christen, M. (2012). FuturICT – The road towards ethical ICT. European Physical Journal – Special Topics, 214, 153–181.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Markus Christen
    • 1
    Email author
  • Helene Blumer
    • 2
  • Christian Hauser
    • 2
  • Markus Huppenbauer
    • 3
  1. 1.Center for EthicsUniversity of ZurichZurichSwitzerland
  2. 2.Department of Entrepreneurial ManagementUniversity of Applied Sciences HTW ChurChurSwitzerland
  3. 3.Center for Religion, Economy and PoliticsUniversity of ZurichZurichSwitzerland

Personalised recommendations