Advertisement

Definition, Diagnostic Criteria, Screening, Diagnosis, and Classification of Diabetes and Categories of Glucose Intolerance

  • Lakshmana Perumal Nandhini
  • Sadishkumar Kamalanathan
  • Jayaprakash Sahoo
Chapter

Abstract

The diagnostic criteria for diabetes mellitus (DM) have undergone a sea change over the last several decades. The specific cutoff points for diagnosing DM still remain a matter of intense debate. Prediabetes is an intermediate state of hyperglycemia characterized by elevated plasma glucose levels above normal, though not qualifying for the diagnosis of DM. Recently, the glycosylated hemoglobin has been included as an additional parameter for the diagnosis of DM. The American Diabetes Association (ADA) 2017 guidelines have laid down certain risk factors for screening for diabetes and prediabetes. DM can be classified based on the underlying pathogenic mechanisms into the following categories: type 1 DM, type 2 DM, gestational diabetes mellitus (GDM), and secondary DM. Type 1 DM is characterized by complete cellular-mediated destruction of the β-cells resulting in insulinopenia and insulin replacement therapy for survival. In contrast to type 1 diabetes, type 2 DM is characterized by relative insulin deficiency due to β-cell dysfunction and resistance to the action of insulin in target tissues. GDM is defined as any degree of hyperglycemia that is first detected during pregnancy and encompasses true GDM and pre-existing DM. There is no one universal criteria for diagnosing GDM. Secondary diabetes group includes monogenic forms of diabetes and others with an underlying genetic defect affecting insulin secretion and action, diseases affecting the pancreas, diabetes associated with endocrine disorders, drug-induced diabetes, and post-transplantation diabetes.

Keywords

Impaired glucose tolerance Gestational diabetes mellitus Monogenic diabetes Neonatal diabetes Prediabetes Secondary diabetes 

Abbreviations

AACC

American Association of Clinical Chemistry

ABCC8

ATP-binding cassette, subfamily C, member 8

ACOG

American College of Obstetricians and Gynecologists

ADA

American Diabetes Association

CVD

Cardiovascular disease

DCCT

Diabetes Control and Complications Trial

DM

Diabetes mellitus

FCPD

Fibrocalculous pancreatic diabetes

FPG

Fasting plasma glucose

GAD

Glutamic acid decarboxylase

GCT

Glucose challenge test

GDM

Gestational diabetes mellitus

GLUT

Glucose transporter

HAPO

Hyperglycemia and pregnancy outcome

HbA1C

Hemoglobin A1c

IA-2

Islet antigen 2

IADPSG

International Association of Diabetes and Pregnancy Study Groups

IFCC

International Federation of Clinical Chemistry and Laboratory Medicine

IFG

Impaired fasting glucose

IGT

Impaired glucose tolerance

KCNJ11

Potassium inwardly rectifying channel, subfamily J, member 11

MODY

Maturity-onset diabetes of the young

NDDG

National Diabetes Data Group

NGSP

National Glycohemoglobin Standardization Program

NICE

National Institute for Health and Care Excellence

NODAT

New-onset diabetes after transplantation

OGTT

Oral glucose tolerance test

PDAC

Pancreatic ductal adenocarcinoma

PG

Plasma glucose

SSA

Somatostatin agonists

UKPDS

United Kingdom Prospective Diabetes Study

WHO

World Health Organization

ZnT8

Zinc transporter 8

Notes

Glossary

Diabetes mellitus

Diabetes is derived from its Greek root which means “to pass through,” and the word mellitus means “from honey.” Diabetes mellitus is defined by the World Health Organization as a metabolic syndrome characterized by chronic hyperglycemia resulting from any of the several conditions that cause defective insulin secretion and/or action.

Prediabetes

It is a state characterized by metabolic abnormalities that increase the risk of developing diabetes mellitus and its complications.

Impaired glucose tolerance

Defined as an intermediate state where blood glucose levels are above normal but do not satisfy the criteria for diagnosing diabetes mellitus.

Gestational diabetes mellitus

Defined as any degree of glucose intolerance that was first detected during pregnancy regardless of whether the condition may have predated the pregnancy or persisted after the pregnancy.

Neonatal diabetes

Development of diabetes in the first 6 months of life.

NODAT (new-onset diabetes after transplantation)

Defined as occurrence of diabetes in previously nondiabetic persons after organ transplantation.

References

  1. 1.
    Lakhtakia R. The history of diabetes mellitus. Sultan Qaboos Univ Med J. 2013;13:368–70.CrossRefGoogle Scholar
  2. 2.
    Diabetes mellitus. Report of a WHO expert committee. World Health Organ Tech Rep Ser. 1965;310:1–44.Google Scholar
  3. 3.
    National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes. 1979;28:1039–57.CrossRefGoogle Scholar
  4. 4.
    Genuth S, Alberti KGMM, Bennett P, Buse J, Defronzo R, Kahn R, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–7.CrossRefGoogle Scholar
  5. 5.
    American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–24.  https://doi.org/10.2337/dc17-S005.CrossRefGoogle Scholar
  6. 6.
    Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30:753–9.  https://doi.org/10.2337/dc07-9920.CrossRefPubMedGoogle Scholar
  7. 7.
    Forouhi NG, Luan J, Hennings S, Wareham NJ. Incidence of Type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990–2000. Diabet Med J Br Diabetes Assoc. 2007;24:200–7.  https://doi.org/10.1111/j.1464-5491.2007.02068.x.CrossRefGoogle Scholar
  8. 8.
    Aguirre F, Brown A, Cho NH, Dahlquitt G, Dodd S, Dunning T. IDF diabetes atlas. Brussels: International Diabetes Federation; 2013.Google Scholar
  9. 9.
    Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet Lond Engl. 2009;374:1677–86.  https://doi.org/10.1016/S0140-6736(09)61457-4.CrossRefGoogle Scholar
  10. 10.
    Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29:1130–9.  https://doi.org/10.2337/diacare.2951130.CrossRefPubMedGoogle Scholar
  11. 11.
    Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA, San Antonio metabolism study. Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia. 2004;47:31–9.  https://doi.org/10.1007/s00125-003-1263-9.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrannini E, Gastaldelli A, Iozzo P. Pathophysiology of prediabetes. Med Clin North Am. 2011;95:327–39, vii–viii.  https://doi.org/10.1016/j.mcna.2010.11.005.
  13. 13.
    Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.  https://doi.org/10.2337/db09-9028.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kanat M, Mari A, Norton L, Winnier D, DeFronzo RA, Jenkinson C, et al. Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61:447–53.  https://doi.org/10.2337/db11-0995.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bookchin RM, Gallop PM. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968;32:86–93.CrossRefGoogle Scholar
  16. 16.
    Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM, et al. Tests of glycemia in diabetes. Diabetes Care. 2004;27:1761–73.CrossRefGoogle Scholar
  17. 17.
    Sacks DB. A1C versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.  https://doi.org/10.2337/dc10-1546.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Coban E, Ozdogan M, Timuragaoglu A. Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients. Acta Haematol. 2004;112:126–8.  https://doi.org/10.1159/000079722.CrossRefPubMedGoogle Scholar
  19. 19.
    Sinha N, Mishra TK, Singh T, Gupta N. Effect of iron deficiency anemia on hemoglobin A1c levels. Ann Lab Med. 2012;32:17–22.  https://doi.org/10.3343/alm.2012.32.1.17.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu X, Chao Y, Wan Z, Wang Y, Ma Y, Ke P, et al. A comparative evaluation of the analytical performances of Capillarys 2 Flex Piercing, Tosoh HLC-723 G8, Premier Hb9210, and Roche Cobas c501 Tina-quant Gen 2 analyzers for HbA1c determination. Biochem Med. 2016;26:353–64.  https://doi.org/10.11613/BM.2016.039.CrossRefGoogle Scholar
  21. 21.
    Martin M, Leroy N, Sulmont V, Gillery P. Evaluation of the In2it analyzer for HbA1c determination. Diabetes Metab. 2010;36:158–64.  https://doi.org/10.1016/j.diabet.2009.11.005.CrossRefPubMedGoogle Scholar
  22. 22.
    Eberentz-Lhomme C, Ducrocq R, Intrator S, Elion J, Nunez E, Assan R. Haemoglobinopathies, malaria, and other interferences with HBA1 assessment. Diabetes Metab. 1984;10:304–10.Google Scholar
  23. 23.
    Sugimoto T, Hashimoto M, Hayakawa I, Tokuno O, Ogino T, Okuno M, et al. Alterations in HbA1c resulting from the donation of autologous blood for elective surgery in patients with diabetes mellitus. Blood Transfus Trasfus Sangue. 2014;12(Suppl 1):s209–13.  https://doi.org/10.2450/2013.0271-12.CrossRefGoogle Scholar
  24. 24.
    McCready F, Cundy T. Effects of splenectomy for hereditary spherocytosis on glycated haemoglobin in a woman with Type 2 diabetes. Diabet Med J Br Diabetes Assoc. 2009;26:570–1.  https://doi.org/10.1111/j.1464-5491.2009.02706.x.CrossRefGoogle Scholar
  25. 25.
    Trask LE, Abbott D, Lee H-K. Low hemoglobin A(1c)–good diabetic control? Clin Chem. 2012;58:648–9.  https://doi.org/10.1373/clinchem.2011.174300.CrossRefPubMedGoogle Scholar
  26. 26.
    Hong JW, Noh JH, Kim D-J. Association between alcohol intake and hemoglobin A1c in the Korean adults: the 2011–2013 Korea National Health and Nutrition Examination Survey. PLoS One. 2016;11:e0167210.  https://doi.org/10.1371/journal.pone.0167210.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Camargo JL, Stifft J, Gross JL. The effect of aspirin and vitamins C and E on HbA1c assays. Clin Chim Acta Int J Clin Chem. 2006;372:206–9.  https://doi.org/10.1016/j.cca.2006.03.031.CrossRefGoogle Scholar
  28. 28.
    Little RR, Rohlfing CL, Wiedmeyer HM, Myers GL, Sacks DB, Goldstein DE, et al. The national glycohemoglobin standardization program: a five-year progress report. Clin Chem. 2001;47:1985–92.PubMedGoogle Scholar
  29. 29.
    Jeppsson J-O, Kobold U, Barr J, Finke A, Hoelzel W, Hoshino T, et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med. 2002;40:78–89.  https://doi.org/10.1515/CCLM.2002.016.CrossRefPubMedGoogle Scholar
  30. 30.
    Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:S81–90.  https://doi.org/10.2337/dc14-S081.CrossRefGoogle Scholar
  31. 31.
    Dabelea D, Rewers A, Stafford JM, Standiford DA, Lawrence JM, Saydah S, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014;133:e938–45.  https://doi.org/10.1542/peds.2013-2795.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sanjeevi CB, Lybrand TP, DeWeese C, Landin-Olsson M, Kockum I, Dahlquist G, et al. Polymorphic amino acid variations in HLA-DQ are associated with systematic physical property changes and occurrence of IDDM. Members of the Swedish Childhood Diabetes Study. Diabetes. 1995;44:125–31.CrossRefGoogle Scholar
  33. 33.
    Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes. 2002;51:1346–55.CrossRefGoogle Scholar
  34. 34.
    Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.  https://doi.org/10.2337/db07-1331.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.  https://doi.org/10.1038/nrg3069.CrossRefPubMedGoogle Scholar
  36. 36.
    Bingley PJ. Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab. 2010;95:25–33.  https://doi.org/10.1210/jc.2009-1365.CrossRefPubMedGoogle Scholar
  37. 37.
    Ziegler A-G, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32:468–78.  https://doi.org/10.1016/j.immuni.2010.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9.  https://doi.org/10.1001/jama.2013.6285.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stene LC, Rewers M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies. Clin Exp Immunol. 2012;168:12–23.  https://doi.org/10.1111/j.1365-2249.2011.04555.x.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792.  https://doi.org/10.1371/journal.pone.0025792.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62:1238–44.  https://doi.org/10.2337/db12-0526.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wahlberg J, Vaarala O, Ludvigsson J, ABIS-study group. Dietary risk factors for the emergence of type 1 diabetes-related autoantibodies in 21/2 year-old Swedish children. Br J Nutr. 2006;95:603–8.CrossRefGoogle Scholar
  43. 43.
    Virtanen SM, Nevalainen J, Kronberg-Kippilä C, Ahonen S, Tapanainen H, Uusitalo L, et al. Food consumption and advanced β cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr. 2012;95:471–8.  https://doi.org/10.3945/ajcn.111.018879.CrossRefPubMedGoogle Scholar
  44. 44.
    Gianani R, Campbell-Thompson M, Sarkar SA, Wasserfall C, Pugliese A, Solis JM, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53:690–8.  https://doi.org/10.1007/s00125-009-1642-y.CrossRefPubMedGoogle Scholar
  45. 45.
    TODAY Study Group, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366:2247–56.  https://doi.org/10.1056/NEJMoa1109333.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  47. 47.
    Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. Diabetes Care. 2000;23:1084–91.CrossRefGoogle Scholar
  48. 48.
    O’sullivan JB, Mahan CM. Criteria for the oral glucose tolerance test in pregnancy. Diabetes. 1964;13:278–85.PubMedGoogle Scholar
  49. 49.
    Committee on Practice Bulletins–Obstetrics. Practice Bulletin No. 137: gestational diabetes mellitus. Obstet Gynecol. 2013;122:406–16.  https://doi.org/10.1097/01.AOG.0000433006.09219.f1.CrossRefGoogle Scholar
  50. 50.
    HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002.  https://doi.org/10.1056/NEJMoa0707943.CrossRefGoogle Scholar
  51. 51.
    International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33:676–82.  https://doi.org/10.2337/dc09-1848.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Benhalima K, Hanssens M, Devlieger R, Verhaeghe J, Mathieu C. Analysis of pregnancy outcomes using the new IADPSG recommendation compared with the Carpenter and Coustan criteria in an area with a low prevalence of gestational diabetes. Int J Endocrinol. 2013;2013:248121.  https://doi.org/10.1155/2013/248121.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Sullivan EP, Avalos G, O’Reilly M, Dennedy MC, Gaffney G, Dunne F, et al. Atlantic Diabetes in Pregnancy (DIP): the prevalence and outcomes of gestational diabetes mellitus using new diagnostic criteria. Diabetologia. 2011;54:1670–5.  https://doi.org/10.1007/s00125-011-2150-4.CrossRefPubMedGoogle Scholar
  54. 54.
    Meek CL, Lewis HB, Patient C, Murphy HR, Simmons D. Diagnosis of gestational diabetes mellitus: falling through the net. Diabetologia. 2015;58:2003–12.  https://doi.org/10.1007/s00125-015-3647-z.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    National Collaborating Centre for Women’s and Children’s Health (UK). Diabetes in pregnancy: management of diabetes and its complications from preconception to the postnatal period. London: National Institute for Health and Care Excellence (UK); 2015.Google Scholar
  56. 56.
    Colagiuri S, Falavigna M, Agarwal MM, Boulvain M, Coetzee E, Hod M, et al. Strategies for implementing the WHO diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Diabetes Res Clin Pract. 2014;103:364–72.  https://doi.org/10.1016/j.diabres.2014.02.012.CrossRefPubMedGoogle Scholar
  57. 57.
    Dahanayaka NJ, Agampodi SB, Ranasinghe OR, Jayaweera PM, Wickramasinghe WA, Adhikari AN, et al. Inadequacy of the risk factor based approach to detect gestational diabetes mellitus. Ceylon Med J. 2012;57:5–9.  https://doi.org/10.4038/cmj.v57i1.4193.CrossRefPubMedGoogle Scholar
  58. 58.
    Miailhe G, Kayem G, Girard G, Legardeur H, Mandelbrot L. Selective rather than universal screening for gestational diabetes mellitus? Eur J Obstet Gynecol Reprod Biol. 2015;191:95–100.  https://doi.org/10.1016/j.ejogrb.2015.05.003.CrossRefPubMedGoogle Scholar
  59. 59.
    Noctor E, Dunne FP. Type 2 diabetes after gestational diabetes: the influence of changing diagnostic criteria. World J Diabetes. 2015;6:234–44.  https://doi.org/10.4239/wjd.v6.i2.234.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Owen K, Hattersley AT. Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab. 2001;15:309–23.  https://doi.org/10.1053/beem.2001.0148.CrossRefPubMedGoogle Scholar
  61. 61.
    Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54:2503–13.CrossRefGoogle Scholar
  62. 62.
    Rubio-Cabezas O, Flanagan SE, Damhuis A, Hattersley AT, Ellard S. KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr Diabetes. 2012;13:322–5.  https://doi.org/10.1111/j.1399-5448.2011.00824.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Girish BN, Rajesh G, Vaidyanathan K, Balakrishnan V. Assessment of cassava toxicity in patients with tropical chronic pancreatitis. Trop Gastroenterol. 2011;32:112–6.PubMedGoogle Scholar
  64. 64.
    Reddy DN, Prasad SS. Genetic basis of chronic pancreatitis in Asia Pacific region. J Gastroenterol Hepatol. 2011;26(Suppl 2):2–5.  https://doi.org/10.1111/j.1440-1746.2010.06598.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Pfützer RH, Barmada MM, Brunskill AP, Finch R, Hart PS, Neoptolemos J, et al. SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology. 2000;119:615–23.CrossRefGoogle Scholar
  66. 66.
    Braganza JM, Schofield D, Snehalatha C, Mohan V. Micronutrient antioxidant status in tropical compared with temperate-zone chronic pancreatitis. Scand J Gastroenterol. 1993;28:1098–104.CrossRefGoogle Scholar
  67. 67.
    Vannasaeng S, Nitiyanant W, Vichayanrat A, Ploybutr S, Harnthong S. C-peptide secretion in calcific tropical pancreatic diabetes. Metabolism. 1986;35:814–7.CrossRefGoogle Scholar
  68. 68.
    Yajnik CS, Shelgikar KM, Sahasrabudhe RA, Naik SS, Pai VR, Alberti KG, et al. The spectrum of pancreatic exocrine and endocrine (beta-cell) function in tropical calcific pancreatitis. Diabetologia. 1990;33:417–21.CrossRefGoogle Scholar
  69. 69.
    Nathan JD, Zdankiewicz PD, Wang J, Spector SA, Aspelund G, Jena BP, et al. Impaired hepatocyte glucose transport protein (GLUT2) internalization in chronic pancreatitis. Pancreas. 2001;22:172–8.CrossRefGoogle Scholar
  70. 70.
    Brunicardi FC, Chaiken RL, Ryan AS, Seymour NE, Hoffmann JA, Lebovitz HE, et al. Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metab. 1996;81:3566–72.  https://doi.org/10.1210/jcem.81.10.8855802.CrossRefPubMedGoogle Scholar
  71. 71.
    Mohan V, Snehalatha C, Ramachandran A, Chari S, Madanagopalan N, Viswanathan M. Plasma glucagon responses in tropical fibrocalculous pancreatic diabetes. Diabetes Res Clin Pract. 1990;9:97–101.CrossRefGoogle Scholar
  72. 72.
    Yajnik CS, Shelgikar KM, Naik SS, Kanitkar SV, Orskov H, Alberti KG, et al. The ketosis-resistance in fibro-calculous-pancreatic-diabetes. 1. Clinical observations and endocrine-metabolic measurements during oral glucose tolerance test. Diabetes Res Clin Pract. 1992;15:149–56.CrossRefGoogle Scholar
  73. 73.
    Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology. 2008;134:981–7.  https://doi.org/10.1053/j.gastro.2008.01.039.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.  https://doi.org/10.1038/sj.bjc.6602619.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134:95–101.  https://doi.org/10.1053/j.gastro.2007.10.040.CrossRefPubMedGoogle Scholar
  76. 76.
    Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009;10:88–95.  https://doi.org/10.1016/S1470-2045(08)70337-1.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev. 2004;25:102–52.  https://doi.org/10.1210/er.2002-0022.CrossRefPubMedGoogle Scholar
  78. 78.
    Biering H, Knappe G, Gerl H, Lochs H. Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Austriaca. 2000;27:27–31.CrossRefGoogle Scholar
  79. 79.
    Kreze A, Kreze-Spirova E, Mikulecky M. Risk factors for glucose intolerance in active acromegaly. Braz J Med Biol Res Rev Bras Pesqui Med E Biol. 2001;34:1429–33.CrossRefGoogle Scholar
  80. 80.
    Fieffe S, Morange I, Petrossians P, Chanson P, Rohmer V, Cortet C, et al. Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. Eur J Endocrinol. 2011;164:877–84.  https://doi.org/10.1530/EJE-10-1050.CrossRefPubMedGoogle Scholar
  81. 81.
    Ottosson M, Vikman-Adolfsson K, Enerbäck S, Elander A, Björntorp P, Edén S. Growth hormone inhibits lipoprotein lipase activity in human adipose tissue. J Clin Endocrinol Metab. 1995;80:936–41.  https://doi.org/10.1210/jcem.80.3.7883853.CrossRefPubMedGoogle Scholar
  82. 82.
    Rizza RA, Mandarino LJ, Gerich JE. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes. 1982;31:663–9.CrossRefGoogle Scholar
  83. 83.
    Møller N, Butler PC, Antsiferov MA, Alberti KG. Effects of growth hormone on insulin sensitivity and forearm metabolism in normal man. Diabetologia. 1989;32:105–10.CrossRefGoogle Scholar
  84. 84.
    Dominici FP, Cifone D, Bartke A, Turyn D. Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone-transgenic mice. J Endocrinol. 1999;161:383–92.CrossRefGoogle Scholar
  85. 85.
    Kasayama S, Otsuki M, Takagi M, Saito H, Sumitani S, Kouhara H, et al. Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol. 2000;52:549–55.CrossRefGoogle Scholar
  86. 86.
    Kinoshita Y, Fujii H, Takeshita A, Taguchi M, Miyakawa M, Oyama K, et al. Impaired glucose metabolism in Japanese patients with acromegaly is restored after successful pituitary surgery if pancreatic {beta}-cell function is preserved. Eur J Endocrinol. 2011;164:467–73.  https://doi.org/10.1530/EJE-10-1096.CrossRefPubMedGoogle Scholar
  87. 87.
    Baroni MG, Giorgino F, Pezzino V, Scaroni C, Avogaro A. Italian Society for the Study of Diabetes (SID)/Italian Endocrinological Society (SIE) guidelines on the treatment of hyperglycemia in Cushing’s syndrome and acromegaly. J Endocrinol Investig. 2016;39:235–55.  https://doi.org/10.1007/s40618-015-0404-6.CrossRefGoogle Scholar
  88. 88.
    Petersenn S, Schopohl J, Barkan A, Mohideen P, Colao A, Abs R, et al. Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial. J Clin Endocrinol Metab. 2010;95:2781–9.  https://doi.org/10.1210/jc.2009-2272.CrossRefPubMedGoogle Scholar
  89. 89.
    Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine. 2006;29:81–90.  https://doi.org/10.1385/ENDO:29:1:181.CrossRefPubMedGoogle Scholar
  90. 90.
    Pivonello R, De Leo M, Vitale P, Cozzolino A, Simeoli C, De Martino MC, et al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl 1):77–81.  https://doi.org/10.1159/000314319.CrossRefPubMedGoogle Scholar
  91. 91.
    Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, et al. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem. 2005;280:33873–84.  https://doi.org/10.1074/jbc.M504119200.CrossRefPubMedGoogle Scholar
  92. 92.
    Gremlich S, Roduit R, Thorens B. Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J Biol Chem. 1997;272:3216–22.CrossRefGoogle Scholar
  93. 93.
    Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest. 1993;91:2020–30.  https://doi.org/10.1172/JCI116424.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Giorgino F, Pedrini MT, Matera L, Smith RJ. Specific increase in p85alpha expression in response to dexamethasone is associated with inhibition of insulin-like growth factor-I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells. J Biol Chem. 1997;272:7455–63.CrossRefGoogle Scholar
  95. 95.
    Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.  https://doi.org/10.4158/EP08331.RAR.CrossRefPubMedGoogle Scholar
  96. 96.
    Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R, et al. Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J. 1996;43:645–55.CrossRefGoogle Scholar
  97. 97.
    Mazziotti G, Gazzaruso C, Giustina A. Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol Metab TEM. 2011;22:499–506.  https://doi.org/10.1016/j.tem.2011.09.001.CrossRefPubMedGoogle Scholar
  98. 98.
    Silverstein JM. Hyperglycemia induced by pasireotide in patients with Cushing’s disease or acromegaly. Pituitary. 2016;19:536–43.  https://doi.org/10.1007/s11102-016-0734-1.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Halfdanarson TR, Rubin J, Farnell MB, Grant CS, Petersen GM. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr Relat Cancer. 2008;15:409–27.  https://doi.org/10.1677/ERC-07-0221.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wermers RA, Fatourechi V, Wynne AG, Kvols LK, Lloyd RV. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine (Baltimore). 1996;75:53–63.CrossRefGoogle Scholar
  101. 101.
    Wermers RA, Fatourechi V, Kvols LK. Clinical spectrum of hyperglucagonemia associated with malignant neuroendocrine tumors. Mayo Clin Proc. 1996;71:1030–8.  https://doi.org/10.1016/S0025-6196(11)63274-6.CrossRefPubMedGoogle Scholar
  102. 102.
    Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract Res Clin Gastroenterol. 2012;26:737–53.  https://doi.org/10.1016/j.bpg.2012.12.003.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135:1469–92.  https://doi.org/10.1053/j.gastro.2008.05.047.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6:689–97.  https://doi.org/10.1038/nrendo.2010.187.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    House MG, Yeo CJ, Schulick RD. Periampullary pancreatic somatostatinoma. Ann Surg Oncol. 2002;9:869–74.CrossRefGoogle Scholar
  106. 106.
    Nesi G, Marcucci T, Rubio CA, Brandi ML, Tonelli F. Somatostatinoma: clinico-pathological features of three cases and literature reviewed. J Gastroenterol Hepatol. 2008;23:521–6.  https://doi.org/10.1111/j.1440-1746.2007.05053.x.CrossRefPubMedGoogle Scholar
  107. 107.
    Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet Lond Engl. 2007;369:201–7.  https://doi.org/10.1016/S0140-6736(07)60108-1.CrossRefGoogle Scholar
  108. 108.
    Ong KL, Barter PJ, Waters DD. Cardiovascular drugs that increase the risk of new-onset diabetes. Am Heart J. 2014;167:421–8.  https://doi.org/10.1016/j.ahj.2013.12.025.CrossRefPubMedGoogle Scholar
  109. 109.
    Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertens Dallas Tex 1979. 2006;48:219–24.  https://doi.org/10.1161/01.HYP.0000231552.10054.aa.CrossRefGoogle Scholar
  110. 110.
    Shepherd J, Blauw GJ, Murphy MB, Bollen ELEM, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet Lond Engl. 2002;360:1623–30.CrossRefGoogle Scholar
  111. 111.
    Navarese EP, Buffon A, Andreotti F, Kozinski M, Welton N, Fabiszak T, et al. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013;111:1123–30.  https://doi.org/10.1016/j.amjcard.2012.12.037.CrossRefPubMedGoogle Scholar
  112. 112.
    Nakata M, Nagasaka S, Kusaka I, Matsuoka H, Ishibashi S, Yada T. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control. Diabetologia. 2006;49:1881–92.  https://doi.org/10.1007/s00125-006-0269-5.CrossRefPubMedGoogle Scholar
  113. 113.
    Baker WL, Talati R, White CM, Coleman CI. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2010;87:98–107.  https://doi.org/10.1016/j.diabres.2009.10.008.CrossRefPubMedGoogle Scholar
  114. 114.
    Lee P, Kengne A-P, Greenfield JR, Day RO, Chalmers J, Ho KKY. Metabolic sequelae of β-blocker therapy: weighing in on the obesity epidemic? Int J Obes 2005. 2011;35:1395–403.  https://doi.org/10.1038/ijo.2010.284.CrossRefGoogle Scholar
  115. 115.
    DE Hert M, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen D, Asai I, et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry. 2011;10:52–77.CrossRefGoogle Scholar
  116. 116.
    Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014;9:e94112.  https://doi.org/10.1371/journal.pone.0094112.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuro Psychopharmacol. 2015;25:1–16.  https://doi.org/10.1016/j.euroneuro.2014.11.008.CrossRefGoogle Scholar
  118. 118.
    Deng C. Effects of antipsychotic medications on appetite, weight, and insulin resistance. Endocrinol Metab Clin N Am. 2013;42:545–63.  https://doi.org/10.1016/j.ecl.2013.05.006.CrossRefGoogle Scholar
  119. 119.
    Correll CU, Detraux J, De Lepeleire J, De Hert M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry. 2015;14:119–36.  https://doi.org/10.1002/wps.20204.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet Lond Engl. 1999;353:2093–9.  https://doi.org/10.1016/S0140-6736(98)08468-2.CrossRefGoogle Scholar
  121. 121.
    Capeau J, Bouteloup V, Katlama C, Bastard J-P, Guiyedi V, Salmon-Ceron D, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS Lond Engl. 2012;26:303–14.  https://doi.org/10.1097/QAD.0b013e32834e8776.CrossRefGoogle Scholar
  122. 122.
    Samaras K. Prevalence and pathogenesis of diabetes mellitus in HIV-1 infection treated with combined antiretroviral therapy. J Acquir Immune Defic Syndr 1999. 2009;50:499–505.  https://doi.org/10.1097/QAI.0b013e31819c291b.CrossRefGoogle Scholar
  123. 123.
    Lane JT, Dagogo-Jack S. Approach to the patient with new-onset diabetes after transplant (NODAT). J Clin Endocrinol Metab. 2011;96:3289–97.  https://doi.org/10.1210/jc.2011-0657.CrossRefPubMedGoogle Scholar
  124. 124.
    Valderhaug TG, Hjelmesæth J, Jenssen T, Røislien J, Leivestad T, Hartmann A. Early posttransplantation hyperglycemia in kidney transplant recipients is associated with overall long-term graft losses. Transplantation. 2012;94:714–20.  https://doi.org/10.1097/TP.0b013e31825f4434.CrossRefPubMedGoogle Scholar
  125. 125.
    Valderhaug TG, Hjelmesæth J, Hartmann A, Røislien J, Bergrem HA, Leivestad T, et al. The association of early post-transplant glucose levels with long-term mortality. Diabetologia. 2011;54:1341–9.  https://doi.org/10.1007/s00125-011-2105-9.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Pietrzak-Nowacka M, Safranow K, Dziewanowski K, Debska-Slizień A, Głyda M, Gołembiewska E, et al. Impact of posttransplant diabetes mellitus on graft function in autosomal dominant polycystic kidney disease patients after kidney transplantation. Ann Acad Med Stetin. 2008;54:41–8.PubMedGoogle Scholar
  127. 127.
    von Kiparski A, Frei D, Uhlschmid G, Largiadèr F, Binswanger U. Post-transplant diabetes mellitus in renal allograft recipients: a matched-pair control study. Nephrol Dial Transplant. 1990;5:220–5.CrossRefGoogle Scholar
  128. 128.
    Hjelmesaeth J, Hartmann A, Leivestad T, Holdaas H, Sagedal S, Olstad M, et al. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 2006;69:588–95.  https://doi.org/10.1038/sj.ki.5000116.CrossRefPubMedGoogle Scholar
  129. 129.
    Porrini E, Delgado P, Bigo C, Alvarez A, Cobo M, Checa MD, et al. Impact of metabolic syndrome on graft function and survival after cadaveric renal transplantation. Am J Kidney Dis. 2006;48:134–42.  https://doi.org/10.1053/j.ajkd.2006.04.078.CrossRefPubMedGoogle Scholar
  130. 130.
    Hjelmesaeth J, Hartmann A, Kofstad J, Stenstrøm J, Leivestad T, Egeland T, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997;64:979–83.CrossRefGoogle Scholar
  131. 131.
    Hjelmesaeth J, Sagedal S, Hartmann A, Rollag H, Egeland T, Hagen M, et al. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation. Diabetologia. 2004;47:1550–6.  https://doi.org/10.1007/s00125-004-1499-z.CrossRefPubMedGoogle Scholar
  132. 132.
    Pham PT, Pham PM, Pham SV, Pham PA, Pham PC. New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes Targets Ther. 2011;4:175–86.  https://doi.org/10.2147/DMSO.S19027.CrossRefGoogle Scholar

Suggested Reading

  1. Edwards CM, Cusi K. Prediabetes: a worldwide epidemic. Endocrinol Metab Clin N Am. 2016;45(4):751–64.  https://doi.org/10.1016/j.ecl.2016.06.007.CrossRefGoogle Scholar
  2. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia. 2017;60(5):769–77.  https://doi.org/10.1007/s00125-017-4226-2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Mack LR, Tomich PG. Gestational diabetes: diagnosis, classification, and clinical care. Obstet Gynecol Clin N Am. 2017;44(2):207–17.  https://doi.org/10.1016/j.ogc.2017.02.002.CrossRefGoogle Scholar
  4. Mazziotti G, Formenti AM, Frara S, Maffezzoni F, Doga M, Giustina A. Diabetes in Cushing disease. Curr Diab Rep. 2017;17(5):32.  https://doi.org/10.1007/s11892-017-0860-9.CrossRefPubMedGoogle Scholar
  5. Rickels MR, Bellin M, Toledo FG, Robertson RP, Andersen DK, Chari ST, Brand R, Frulloni L, Anderson MA, Whitcomb DC, PancreasFest Recommendation Conference Participants. Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from PancreasFest 2012. Pancreatology. 2013;13(4):336–42.  https://doi.org/10.1016/j.pan.2013.05.002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lakshmana Perumal Nandhini
    • 1
  • Sadishkumar Kamalanathan
    • 1
  • Jayaprakash Sahoo
    • 1
  1. 1.Department of EndocrinologyJIPMERPuducherryIndia

Personalised recommendations