Diabetes and Cancer

  • Joanna Krajewska (Wojciechowska)
  • Wojciech Krajewski
  • Tomasz Zatoński


Diabetes mellitus (DM) and cancers are the leading causes of death worldwide. Recent evidences imply that there is a significant association between DM (mainly type 2 DM) and neoplastic transformation. The presumed links between these two entities are mainly biological linking factors (hyperinsulinemia, hyperglycaemia and chronic inflammation caused by excessive adipose tissue). The increased risk of oncogenesis was observed mainly for pancreatic and liver cancers, cancers of the genitourinary system and breast cancer. Nevertheless, the studies on the risk of carcinogenesis in other sites of the human body are also available. Interestingly, antidiabetic drugs also influence the chance of neoplastic transformation. Some of them presumably elevate the risk of oncogenesis, some reduce the risk, and some express inconsistent activity. It was also revealed that several antidiabetic medications present antineoplastic features via enhancing the effectiveness of conventional chemotherapy. Antineoplastic activities of metformin and its ability to prevent metastasis are widely discussed in the literature. This chapter summarizes the current knowledge of the correlation between diabetes mellitus and oncogenesis. It also discusses the influence of antidiabetic drugs on cancer risk and cancer biology.


Diabetes mellitus Cancer Antidiabetic drugs Oncogenesis Hyperinsulinemia Hyperglycaemia Obesity 




increased serum insulin level


increased serum glucose level


promoting neoplastic transformation

PI3K/Akt/mTOR signalling pathway (phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signalling pathway)

critical pathway in oncogenesis

IGF-binding proteins

proteins crucial in IGF serum transfer and bioavailability

Urokinase plasminogen activator (uPA)

a critical mediator in cancer cell displacement

ETM (epithelial to mesenchymal transition process)

a mechanism that enables cancer cells to metastasize


adipose tissue polypeptide hormones, e.g. leptin and adiponectin

SNPs (single nucleotide polymorphisms)

a sequence in a single nucleotide that is observed at a specific position in the genome

NAFLD (non-alcoholic fatty liver disease)

a condition of fat deposits accumulation not induced by alcohol abuse. NAFLD is associated with metabolic syndrome and insulin resistance


malfunction or death of non-adipose tissue cells caused by accumulation of excessive lipids

Oxidative stress

imbalance between antioxidant and prooxidant factors

Oncogenesis, tumorigenesis, and carcinogenesis

a group of mechanisms leading to transformation of normal cells to cancer cell


a setting in which something happens (environment, surrounding)


a process of glucose biosynthesis


a process of biochemical degradation of glycogen to glucose


a factor controlling transcription of DNA and cells survival


epithelial ovarian cancer cell lines

Stem cell

undifferentiated cells which have ability to differentiate into specialized cells and to divide to synthesize more stem cells


  1. 1.
    Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674–85.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. Fasting serum glucose level and cancer risk in Korean men and women. JAMA. 2005;293(2):194–202.PubMedCrossRefGoogle Scholar
  3. 3.
    Tseng KS, Lin C, Lin YS, Weng SF. Risk of head and neck cancer in patients with diabetes mellitus: a retrospective cohort study in Taiwan. JAMA Otolaryngol Head Neck Surg. 2014;140(8):746–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Noto H, Tsujimoto T, Sasazuki T, Noda M. Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Endocr Pract. 2011;17(4):616–28.PubMedCrossRefGoogle Scholar
  5. 5.
    Wojciechowska J, Krajewski W, Bolanowski M, Krecicki T, Zatonski T. Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124(5):263–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Zendehdel K, Nyren O, Ostenson CG, Adami HO, Ekbom A, Ye W. Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. J Natl Cancer Inst. 2003;95(23):1797–800.PubMedCrossRefGoogle Scholar
  7. 7.
    Shu X, Ji J, Li X, Sundquist J, Sundquist K, Hemminki K. Cancer risk among patients hospitalized for type 1 diabetes mellitus: a population-based cohort study in Sweden. Diabet Med. 2010;27(7):791–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer. 2009;16(4):1103–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res. 2010;3(11):1451–61.CrossRefGoogle Scholar
  10. 10.
    Ahmed AM. History of diabetes mellitus. Saudi Med J. 2002;23(4):373–8.PubMedGoogle Scholar
  11. 11.
    Loriaux DL. Diabetes and the Ebers Papyrus: 1552 B.C. Endocrinologist. 2006;16(2):55–6.CrossRefGoogle Scholar
  12. 12.
    Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nguyen C, Varney MD, Harrison LC, Morahan G. Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes. 2013;62(6):2135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Suppl 1):S64–71.CrossRefGoogle Scholar
  15. 15.
    Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Moore H, Summerbell C, Hooper L, Cruickshank K, Vyas A, Johnstone P, et al. Dietary advice for treatment of type 2 diabetes mellitus in adults. Cochrane Database Syst Rev. 2004;3:CD004097.Google Scholar
  17. 17.
    Brunetti L, Kalabalik J. Management of type-2 diabetes mellitus in adults: focus on individualizing non-insulin therapies. P T. 2012;37(12):687–96.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009;32(1):193–203.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest. 2005;115(3):485–91.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Perkins JM, Dunn JP, Jagasia SM. Perspectives in gestational diabetes mellitus: a review of screening, diagnosis, and treatment. Clin Diabetes. 2007;25(2):57–62.CrossRefGoogle Scholar
  21. 21.
    Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci. 2011;1243:54–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, et al. Metformin: multi-faceted protection against cancer. Oncotarget. 2011;2(12):896–917.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol Syst Biol. 2009;5:243.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cui Y, Andersen DK. Diabetes and pancreatic cancer. Endocr Relat Cancer. 2012;19(5):F9–F26.PubMedCrossRefGoogle Scholar
  25. 25.
    Kourelis TV, Siegel RD. Metformin and cancer: new applications for an old drug. Med Oncol. 2012;29(2):1314–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Belfiore A. The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des. 2007;13(7):671–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Friberg E, Mantzoros CS, Wolk A. Diabetes and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2007;16(2):276–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Baxter RC, Brown AS, Turtle JR. Association between serum insulin, serum somatomedin and liver receptors for human growth hormone in streptozotocin diabetes. Horm Metab Res. 1980;12(8):377–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Somasundar P, Yu AK, Vona-Davis L, McFadden DW. Differential effects of leptin on cancer in vitro. J Surg Res. 2003;113(1):50–5.PubMedCrossRefGoogle Scholar
  30. 30.
    van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J. 2014;38(5):330–6.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Li D. Diabetes and pancreatic cancer. Mol Carcinog. 2012;51(1):64–74.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem. 2011;16(7):1123–34.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15(8):484–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP. Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer. 2008;98(2):370–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    O’Rourke RW. Obesity and cancer: at the crossroads of cellular metabolism and proliferation. Surg Obes Relat Dis. 2014;10(6):1208–19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sun L, Yu S. Diabetes mellitus is an independent risk factor for colorectal cancer. Dig Dis Sci. 2012;57(6):1586–97.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wu L, Yu C, Jiang H, Tang J, Huang HL, Gao J, et al. Diabetes mellitus and the occurrence of colorectal cancer: an updated meta-analysis of cohort studies. Diabetes Technol Ther. 2013;15(5):419–27.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Balasubramanyam M. Diabetic oncopathy--one more yet another deadly diabetic complication! Indian J Med Res. 2014;140(1):15–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92(11):2076–83.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Elena JW, Steplowski E, Yu K, Hartge P, Tobias GS, Brotzman MJ, et al. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control. 2013;24(1):13–25.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hsu C, Saif MW. Diabetes and pancreatic cancer. Highlights from the “2011 ASCO Annual Meeting”. Chicago, IL, USA; June 3-7, 2011. JOP. 2011;12(4):330–3.PubMedGoogle Scholar
  44. 44.
    Grote VA, Rohrmann S, Nieters A, Dossus L, Tjonneland A, Halkjaer J, et al. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia. 2011;54(12):3037–46.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Stevens RJ, Roddam AW, Beral V. Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. Br J Cancer. 2007;96(3):507–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Prizment AE, Gross M, Rasmussen-Torvik L, Peacock JM, Anderson KE. Genes related to diabetes may be associated with pancreatic cancer in a population-based case-control study in Minnesota. Pancreas. 2012;41(1):50–3.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pierce BL, Austin MA, Ahsan H. Association study of type 2 diabetes genetic susceptibility variants and risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes Control. 2011;22(6):877–83.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Murad AS, Smith GD, Lewis SJ, Cox A, Donovan JL, Neal DE, et al. A polymorphism in the glucokinase gene that raises plasma fasting glucose, rs1799884, is associated with diabetes mellitus and prostate cancer: findings from a population-based, case-control study (the ProtecT study). Int J Mol Epidemiol Genet. 2010;1(3):175–83.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54(4):533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lawson DH, Gray JM, McKillop C, Clarke J, Lee FD, Patrick RS. Diabetes mellitus and primary hepatocellular carcinoma. Q J Med. 1986;61(234):945–55.PubMedGoogle Scholar
  51. 51.
    Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60(1):110–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang C, Wang X, Gong G, Ben Q, Qiu W, Chen Y, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130(7):1639–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Noureddin M, Rinella ME. Nonalcoholic fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin Liver Dis. 2015;19(2):361–79.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiencke JK. Impact of race/ethnicity on molecular pathways in human cancer. Nat Rev Cancer. 2004;4(1):79–84.PubMedCrossRefGoogle Scholar
  55. 55.
    El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol. 2006;4(3):369–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Gao C, Yao SK. Diabetes mellitus: a “true” independent risk factor for hepatocellular carcinoma? Hepatobiliary Pancreat Dis Int. 2009;8(5):465–73.PubMedGoogle Scholar
  57. 57.
    Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(22):1679–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang YX, Hennessy S, Lewis JD. Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol. 2005;3(6):587–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J. Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2011;26(11):863–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Xu X, Wu J, Mao Y, Zhu Y, Hu Z, Xu X, et al. Diabetes mellitus and risk of bladder cancer: a meta-analysis of cohort studies. PLoS One. 2013;8(3):e58079.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Larsson SC, Orsini N, Brismar K, Wolk A. Diabetes mellitus and risk of bladder cancer: a meta-analysis. Diabetologia. 2006;49(12):2819–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Woolcott CG, Maskarinec G, Haiman CA, Henderson BE, Kolonel LN. Diabetes and urothelial cancer risk: the Multiethnic Cohort study. Cancer Epidemiol. 2011;35(6):551–4.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhu Z, Wang X, Shen Z, Lu Y, Zhong S, Xu C. Risk of bladder cancer in patients with diabetes mellitus: an updated meta-analysis of 36 observational studies. BMC Cancer. 2013;13:310.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Joh HK, Willett WC, Cho E. Type 2 diabetes and the risk of renal cell cancer in women. Diabetes Care. 2011;34(7):1552–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med. 2006;166(17):1871–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Svacina S. Tumours of kidneys, urinary bladder and prostate in obesity and diabetes. Vnitr Lek. 2008;54(5):464–7.PubMedGoogle Scholar
  67. 67.
    Zucchetto A, Dal Maso L, Tavani A, Montella M, Ramazzotti V, Talamini R, et al. History of treated hypertension and diabetes mellitus and risk of renal cell cancer. Ann Oncol. 2007;18(3):596–600.PubMedCrossRefGoogle Scholar
  68. 68.
    Qayyum T, Oades G, Horgan P, Aitchison M, Edwards J. The epidemiology and risk factors for renal cancer. Current Urol. 2013;6(4):169–74.CrossRefGoogle Scholar
  69. 69.
    Washio M, Mori M, Khan M, Sakauchi F, Watanabe Y, Ozasa K, et al. Diabetes mellitus and kidney cancer risk: the results of Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study). Int J Urol. 2007;14(5):393–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Lucenteforte E, Bosetti C, Talamini R, Montella M, Zucchetto A, Pelucchi C, et al. Diabetes and endometrial cancer: effect modification by body weight, physical activity and hypertension. Br J Cancer. 2007;97(7):995–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lindemann K, Vatten LJ, Ellstrom-Engh M, Eskild A. Body mass, diabetes and smoking, and endometrial cancer risk: a follow-up study. Br J Cancer. 2008;98(9):1582–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lambe M, Wigertz A, Garmo H, Walldius G, Jungner I, Hammar N. Impaired glucose metabolism and diabetes and the risk of breast, endometrial, and ovarian cancer. Cancer Causes Control. 2011;22(8):1163–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, et al. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006;106(11):2376–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Liao S, Li J, Wei W, Wang L, Zhang Y, Li J, et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev. 2011;12(4):1061–5.PubMedGoogle Scholar
  75. 75.
    Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121(4):856–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Schernhammer ES, Holly JM, Pollak MN, Hankinson SE. Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14(3):699–704.PubMedCrossRefGoogle Scholar
  77. 77.
    Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2009;101(1):48–60.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Novosyadlyy R, Lann DE, Vijayakumar A, Rowzee A, Lazzarino DA, Fierz Y, et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res. 2010;70(2):741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jones RA, Moorehead RA. The impact of transgenic IGF-IR overexpression on mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia. 2008;13(4):407–13.PubMedCrossRefGoogle Scholar
  80. 80.
    Stott-Miller M, Chen C, Chuang SC, Lee YC, Boccia S, Brenner H, et al. History of diabetes and risk of head and neck cancer: a pooled analysis from the international head and neck cancer epidemiology consortium. Cancer Epidemiol Biomarkers Prev. 2012;21(2):294–304.PubMedCrossRefGoogle Scholar
  81. 81.
    Becker C, Jick SS, Meier CR, Bodmer M. Metformin and the risk of head and neck cancer: a case-control analysis. Diabetes Obes Metab. 2014;16(11):1148–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Stott-Miller M, Chen C, Schwartz SM. Type II diabetes and metabolic syndrome in relation to head and neck squamous cell carcinoma risk: a SEER-Medicare database study. Cancer Epidemiol. 2013;37(4):428–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Nakamura K, Wada K, Tamai Y, Tsuji M, Kawachi T, Hori A, et al. Diabetes mellitus and risk of cancer in Takayama: a population-based prospective cohort study in Japan. Cancer Sci. 2013;104(10):1362–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Kuriki K, Hirose K, Tajima K. Diabetes and cancer risk for all and specific sites among Japanese men and women. Eur J Cancer Prev. 2007;16(1):83–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Atchison EA, Gridley G, Carreon JD, Leitzmann MF, McGlynn KA. Risk of cancer in a large cohort of U.S. veterans with diabetes. Int J Cancer. 2011;128(3):635–43.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bosetti C, Rosato V, Polesel J, Levi F, Talamini R, Montella M, et al. Diabetes mellitus and cancer risk in a network of case-control studies. Nutr Cancer. 2012;64(5):643–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2056–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Waters KM, Henderson BE, Stram DO, Wan P, Kolonel LN, Haiman CA. Association of diabetes with prostate cancer risk in the multiethnic cohort. Am J Epidemiol. 2009;169(8):937–45.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis. 2013;16(2):151–8, S1.PubMedCrossRefGoogle Scholar
  90. 90.
    Li Q, Kuriyama S, Kakizaki M, Yan H, Sone T, Nagai M, et al. History of diabetes mellitus and the risk of prostate cancer: the Ohsaki Cohort Study. Cancer Causes Control. 2010;21(7):1025–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Tseng CH. Diabetes and risk of prostate cancer: a study using the National Health Insurance. Diabetes Care. 2011;34(3):616–21.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Simo R, Plana-Ripoll O, Puente D, Morros R, Mundet X, Vilca LM, et al. Impact of glucose-lowering agents on the risk of cancer in type 2 diabetic patients. The Barcelona case-control study. PLoS One. 2013;8(11):e79968.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rattan R, Ali Fehmi R, Munkarah A. Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol. 2012;2012:928127.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rosta A. Diabetes and cancer risk: oncologic considerations. Orv Hetil. 2011;152(29):1144–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A. 2013;110(3):972–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507–11.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14(1):29–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pollak M. Potential applications for biguanides in oncology. J Clin Invest. 2013;123(9):3693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis. Am J Gastroenterol. 2012;107(4):620–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 2009;137(2):482–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang Q, Kip KE. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97(7):2347–53.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11:20.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Singh S, Singh H, Singh PP, Murad MH, Limburg PJ. Antidiabetic medications and the risk of colorectal cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2258–68.PubMedCrossRefGoogle Scholar
  107. 107.
    Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2012;21(2):280–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control. 2009;20(9):1617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF, et al. Metformin use and prostate cancer risk. Eur Urol. 2014;66(6):1012–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Kato H, Sekine Y, Furuya Y, Miyazawa Y, Koike H, Suzuki K. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem Biophys Res Commun. 2015;461:115.PubMedCrossRefGoogle Scholar
  111. 111.
    Murtola TJ, Tammela TL, Lahtela J, Auvinen A. Antidiabetic medication and prostate cancer risk: a population-based case-control study. Am J Epidemiol. 2008;168(8):925–31.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang FQ, Wang JJ, Yan JS, Huang JH, Li W, Che JP, et al. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells. Int J Clin Exp Med. 2014;7(10):3289–96.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Febbraro T, Lengyel E, Romero IL. Old drug, new trick: repurposing metformin for gynecologic cancers? Gynecol Oncol. 2014;135(3):614–21.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Dilokthornsakul P, Chaiyakunapruk N, Termrungruanglert W, Pratoomsoot C, Saokeaw S, Sruamsiri R. The effects of metformin on ovarian cancer: a systematic review. Int J Gynecol Cancer. 2013;23(9):1544–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN, et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol. 2008;110(2):246–50.PubMedCrossRefGoogle Scholar
  116. 116.
    Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat. 2011;126(2):355–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27(20):3297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lai SW, Liao KF, Chen PC, Tsai PY, Hsieh DP, Chen CC. Antidiabetes drugs correlate with decreased risk of lung cancer: a population-based observation in Taiwan. Clin Lung Cancer. 2012;13(2):143–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Tan BX, Yao WX, Ge J, Peng XC, Du XB, Zhang R, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer. 2011;117(22):5103–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Yen YC, Lin C, Lin SW, Lin YS, Weng SF. Effect of metformin on the incidence of head and neck cancer in diabetics. Head Neck. 2015;37(9):1268–73.PubMedCrossRefGoogle Scholar
  121. 121.
    Sikka A, Kaur M, Agarwal C, Deep G, Agarwal R. Metformin suppresses growth of human head and neck squamous cell carcinoma via global inhibition of protein translation. Cell Cycle. 2012;11(7):1374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Rego DF, Pavan LM, Elias ST, De Luca CG, Guerra EN. Effects of metformin on head and neck cancer: a systematic review. Oral Oncol. 2015;51(5):416–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Sandulache VC, Hamblin JS, Skinner HD, Kubik MW, Myers JN, Zevallos JP. Association between metformin use and improved survival in patients with laryngeal squamous cell carcinoma. Head Neck. 2014;36(7):1039–43.PubMedCrossRefGoogle Scholar
  124. 124.
    Yasukagawa T, Niwa Y, Simizu S, Umezawa K. Suppression of cellular invasion by glybenclamide through inhibited secretion of platelet-derived growth factor in ovarian clear cell carcinoma ES-2 cells. FEBS Lett. 2012;586(10):1504–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Noto H, Goto A, Tsujimoto T, Osame K, Noda M. Latest insights into the risk of cancer in diabetes. J Diabetes Investig. 2013;4(3):225–32.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(7):E1170–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Onitilo AA, Engel JM, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer II: role of diabetes medications and influence of shared risk factors. Cancer Causes Control. 2012;23(7):991–1008.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hsieh MC, Lee TC, Cheng SM, Tu ST, Yen MH, Tseng CH. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. Exp Diabetes Res. 2012;2012:413782.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gonzalez-Perez A, Garcia Rodriguez LA. Prostate cancer risk among men with diabetes mellitus (Spain). Cancer Causes Control. 2005;16(9):1055–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Yang X, So WY, Ma RC, Yu LW, Ko GT, Kong AP, et al. Use of sulphonylurea and cancer in type 2 diabetes-the Hong Kong diabetes registry. Diabetes Res Clin Pract. 2010;90(3):343–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Pasello G, Urso L, Conte P, Favaretto A. Effects of sulfonylureas on tumor growth: a review of the literature. Oncologist. 2013;18(10):1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E. Sulphonylureas and cancer: a case-control study. Acta Diabetol. 2009;46(4):279–84.PubMedCrossRefGoogle Scholar
  133. 133.
    Blin P, Lassalle R, Dureau-Pournin C, Ambrosino B, Bernard MA, Abouelfath A, et al. Insulin glargine and risk of cancer: a cohort study in the French National Healthcare Insurance Database. Diabetologia. 2012;55(3):644–53.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Buchs AE, Silverman BG. Incidence of malignancies in patients with diabetes mellitus and correlation with treatment modalities in a large Israeli health maintenance organization: a historical cohort study. Metab Clin Exp. 2011;60(10):1379–85.PubMedCrossRefGoogle Scholar
  135. 135.
    Dejgaard A, Lynggaard H, Rastam J, Krogsgaard Thomsen M. No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis. Diabetologia. 2009;52(12):2507–12.PubMedCrossRefGoogle Scholar
  136. 136.
    Karlstad O, Starup-Linde J, Vestergaard P, Hjellvik V, Bazelier MT, Schmidt MK, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. Curr Drug Saf. 2013;8(5):333–48.PubMedCrossRefGoogle Scholar
  137. 137.
    Colmers IN, Bowker SL, Tjosvold LA, Johnson JA. Insulin use and cancer risk in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies. Diabetes Metab. 2012;38(6):485–506.PubMedCrossRefGoogle Scholar
  138. 138.
    Stammberger I, Essermeant L. Insulin glargine: a reevaluation of rodent carcinogenicity findings. Int J Toxicol. 2012;31(2):137–42.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Lim S, Stember KG, He W, Bianca PC, Yelibi C, Marquis A, et al. Electronic medical record cancer incidence over six years comparing new users of glargine with new users of NPH insulin. PLoS One. 2014;9(10):e109433.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Teng JA, Hou RL, Li DL, Yang RP, Qin J. Glargine promotes proliferation of breast adenocarcinoma cell line MCF-7 via AKT activation. Horm Metab Res. 2011;43(8):519–23.PubMedCrossRefGoogle Scholar
  141. 141.
    Aizen D, Sarfstein R, Bruchim I, Weinstein D, Laron Z, Werner H. Proliferative and signaling activities of insulin analogues in endometrial cancer cells. Mol Cell Endocrinol. 2015;406:27–39.PubMedCrossRefGoogle Scholar
  142. 142.
    Qin J, Teng JA, Zhu Z, Chen JX, Wu YY. Glargine promotes human colorectal cancer cell proliferation via upregulation of miR-95. Horm Metab Res. 2015;47(11):861–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Bordeleau L, Yakubovich N, Dagenais GR, Rosenstock J, Probstfield J, Chang Yu P, et al. The association of basal insulin glargine and/or n-3 fatty acids with incident cancers in patients with dysglycemia. Diabetes Care. 2014;37(5):1360–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Wei S, Yang J, Lee SL, Kulp SK, Chen CS. PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett. 2009;276(2):119–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Weng JR, Chen CY, Pinzone JJ, Ringel MD, Chen CS. Beyond peroxisome proliferator-activated receptor gamma signaling: the multi-facets of the antitumor effect of thiazolidinediones. Endocr Relat Cancer. 2006;13(2):401–13.PubMedCrossRefGoogle Scholar
  146. 146.
    Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol. 2007;25(12):1476–81.PubMedCrossRefGoogle Scholar
  147. 147.
    Monami M, Dicembrini I, Mannucci E. Thiazolidinediones and cancer: results of a meta-analysis of randomized clinical trials. Acta Diabetol. 2014;51(1):91–101.PubMedCrossRefGoogle Scholar
  148. 148.
    Colmers IN, Bowker SL, Johnson JA. Thiazolidinedione use and cancer incidence in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2012;38(6):475–84.PubMedCrossRefGoogle Scholar
  149. 149.
    Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology. 2012;55(5):1462–72.PubMedCrossRefGoogle Scholar
  150. 150.
    Kumagai T, Ikezoe T, Gui D, O’Kelly J, Tong XJ, Cohen FJ, et al. RWJ-241947 (MCC-555), a unique peroxisome proliferator-activated receptor-gamma ligand with antitumor activity against human prostate cancer in vitro and in beige/nude/X-linked immunodeficient mice and enhancement of apoptosis in myeloma cells induced by arsenic trioxide. Clin Cancer Res. 2004;10(4):1508–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Yamaguchi K, Lee SH, Eling TE, Baek SJ. A novel peroxisome proliferator-activated receptor gamma ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Mol Cancer Ther. 2006;5(5):1352–61.PubMedCrossRefGoogle Scholar
  152. 152.
    Min KW, Zhang X, Imchen T, Baek SJ. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4. Toxicol Appl Pharmacol. 2012;263(2):225–32.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Joshi H, Pal T, Ramaa CS. A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin Investig Drugs. 2014;23(4):501–10.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Feng YH, Velazquez-Torres G, Gully C, Chen J, Lee MH, Yeung SC. The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med. 2011;15(4):825–36.PubMedCrossRefGoogle Scholar
  155. 155.
    Frohlich E, Wahl R. Chemotherapy and chemoprevention by thiazolidinediones. Biomed Res Int. 2015;2015:845340.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ramos-Nino ME, MacLean CD, Littenberg B. Association between cancer prevalence and use of thiazolidinediones: results from the Vermont diabetes information system. BMC Med. 2007;5:17.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ferwana M, Firwana B, Hasan R, Al-Mallah MH, Kim S, Montori VM, et al. Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies. Diabet Med. 2013;30(9):1026–32.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Jin SM, Song SO, Jung CH, Chang JS, Suh S, Kang SM, et al. Risk of bladder cancer among patients with diabetes treated with a 15 mg pioglitazone dose in Korea: a multi-center retrospective cohort study. J Korean Med Sci. 2014;29(2):238–42.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Turner RM, Kwok CS, Chen-Turner C, Maduakor CA, Singh S, Loke YK. Thiazolidinediones and associated risk of bladder cancer: a systematic review and meta-analysis. Br J Clin Pharmacol. 2014;78(2):258–73.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Ferrara A, Lewis JD, Quesenberry CP Jr, Peng T, Strom BL, Van Den Eeden SK, et al. Cohort study of pioglitazone and cancer incidence in patients with diabetes. Diabetes Care. 2011;34(4):923–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Gokhale M, Buse JB, Gray CL, Pate V, Marquis MA, Sturmer T. Dipeptidyl-peptidase-4 inhibitors and pancreatic cancer: a cohort study. Diabetes Obes Metab. 2014;16(12):1247–56.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Butler AE, Galasso R, Matveyenko A, Rizza RA, Dry S, Butler PC. Pancreatic duct replication is increased with obesity and type 2 diabetes in humans. Diabetologia. 2010;53(1):21–6.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Tella SH, Rendell MS. DPP-4 inhibitors: focus on safety. Expert Opin Drug Saf. 2015;14(1):127–40.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Tseng CH, Lee KY, Tseng FH. An updated review on cancer risk associated with incretin mimetics and enhancers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(1):67–124.PubMedCrossRefGoogle Scholar
  165. 165.
    Kissow H, Hartmann B, Holst JJ, Viby NE, Hansen LS, Rosenkilde MM, et al. Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept. 2012;179(1–3):91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Femia AP, Raimondi L, Maglieri G, Lodovici M, Mannucci E, Caderni G. Long-term treatment with Sitagliptin, a dipeptidyl peptidase-4 inhibitor, reduces colon carcinogenesis and reactive oxygen species in 1,2-dimethylhydrazine-induced rats. Int J Cancer. 2013;133(10):2498–503.PubMedCrossRefGoogle Scholar
  167. 167.
    Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 2013;22(7):1007–15.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63(11):3891–905.PubMedCrossRefGoogle Scholar
  169. 169.
    Koehler JA, Kain T, Drucker DJ. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology. 2011;152(9):3362–72.PubMedCrossRefGoogle Scholar
  170. 170.
    Ligumsky H, Wolf I, Israeli S, Haimsohn M, Ferber S, Karasik A, et al. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat. 2012;132(2):449–61.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhao H, Wang L, Wei R, Xiu D, Tao M, Ke J, et al. Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway. Diabetes Obes Metab. 2014;16(9):850–60.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Samson SL, Garber A. GLP-1R agonist therapy for diabetes: benefits and potential risks. Curr Opin Endocrinol Diabetes Obes. 2013;20(2):87–97.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Nauck MA, Friedrich N. Do GLP-1-based therapies increase cancer risk? Diabetes Care. 2013;36(Suppl 2):S245–52.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Hegedus L, Moses AC, Zdravkovic M, Le Thi T, Daniels GH. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab. 2011;96(3):853–60.PubMedCrossRefGoogle Scholar
  175. 175.
    Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of alpha-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.PubMedCrossRefGoogle Scholar
  176. 176.
    Tseng YH, Tsan YT, Chan WC, Sheu WH, Chen PC. Use of an alpha-glucosidase inhibitor and the risk of colorectal cancer in patients with diabetes: a Nationwide, Population-Based Cohort Study. Diabetes Care. 2015;38(11):2068–74.PubMedCrossRefGoogle Scholar
  177. 177.
    Chen YL, Cheng KC, Lai SW, Tsai IJ, Lin CC, Sung FC, et al. Diabetes and risk of subsequent gastric cancer: a population-based cohort study in Taiwan. Gastric Cancer. 2013;16(3):389–96.PubMedCrossRefGoogle Scholar
  178. 178.
    Lai SW, Liao KF, Lai HC, Tsai PY, Sung FC, Chen PC. Kidney cancer and diabetes mellitus: a population-based case-control study in Taiwan. Ann Acad Med Singap. 2013;42(3):120–4.PubMedGoogle Scholar
  179. 179.
    Wu L, Zhu J, Prokop LJ, Murad MH. Pharmacologic therapy of diabetes and overall cancer risk and mortality: a meta-analysis of 265 studies. Sci Rep. 2015;5:10147.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Malhotra A, Kudyar S, Gupta AK, Kudyar RP, Malhotra P. Sodium glucose co-transporter inhibitors - a new class of old drugs. Int J Appl Basic Med Res. 2015;5(3):161–3.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Lin HW, Tseng CH. A review on the relationship between SGLT2 inhibitors and Cancer. Int J Endocrinol. 2014;2014:719578.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112(30):E4111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Villani LA, Smith BK, Marcinko K, Ford RJ, Broadfield LA, Green AE, et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol Metab. 2016;5(10):1048–56.PubMedPubMedCentralCrossRefGoogle Scholar

Suggested/Further Reading

  1. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res. 2010;3(11):1451–61. – a systemic review with meta-analysis presenting the inverse association between metformin and cancer risk.CrossRefGoogle Scholar
  2. Feng YH, Velazquez-Torres G, Gully C, Chen J, Lee MH, Yeung SC. The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med. 2011;15(4):825–36. – another study assessing the influence of anti-diabetic medications on cancer biology.PubMedCrossRefGoogle Scholar
  3. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674–85. – a clear and comprehensive consensus report on the correlation between diabetes mellitus and oncogenesis.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Pollak M. Potential applications for biguanides in oncology. J Clin Invest. 2013;123(9):3693–700. – a study on potential usefulness of biguanides (metformin with its antineoplastic activities) in oncology.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15(8):484–98. – a study presenting increased risk of cancer incidence in patients with adiposity ( adiposity is significantly correlated with type 2 diabetes mellitus).PubMedCrossRefGoogle Scholar
  6. Ryu TY, Park J, Scherer PE. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J. 2014;38(5):330–6. – a study explaining the tumor-promoting activity of hyperglycemia.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. – a comprehensive meta-analysis on the correlation between type 2 diabetes mellitus and cancer.PubMedCrossRefGoogle Scholar
  8. Wojciechowska J, Krajewski W, Bolanowski M, Krecicki T, Zatonski T. Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124(5):263–75. – a review article written by the authors of this chapter. The chapter is based on this article. The article, similarly to this chapter, analyse the association between diabetes mellitus (mainly type 2 diabetes mellitus) and cancer risk and cancer biology. The article also present the association between diabetes mellitus and antidiabetic medications.PubMedCrossRefGoogle Scholar
  9. Wu L, Zhu J, Prokop LJ, Murad MH. Pharmacologic therapy of diabetes and overall cancer risk and mortality: a meta-analysis of 265 studies. Sci Rep. 2015;5:10147. – a meta-analysis assessing the association between anti-diabetic pharmacotherapy and cancer risk and mortality.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joanna Krajewska (Wojciechowska)
    • 1
  • Wojciech Krajewski
    • 2
  • Tomasz Zatoński
    • 1
  1. 1.Department and Clinic of Otolaryngology, Head and Neck SurgeryWrocław Medical UniversityWrocławPoland
  2. 2.Department and Clinic of UrologyWrocław Medical University HospitalWrocławPoland

Personalised recommendations